
Shido Inu

Smart Contract
Audit Report

04 Mar 2022

Shido Inu | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Shido Inu | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Shido Inu SHIDO Binance Smart Chain

| Addresses

Contract address 0x733af324146dcfe743515d8d77dc25140a07f9e0

Contract deployer address 0x7ef6E527969054afbc0980E00C51D2E645b4A5ef

| Project Website

https://www.shido.finance/

| Codebase

https://bscscan.com/address/0x733af324146dcfe743515d8d77dc25140a07f9e0#code

https://www.shido.finance/
https://bscscan.com/address/0x733af324146dcfe743515d8d77dc25140a07f9e0#code

Shido Inu | Security Analysis

SUMMARY

The Shido Ecosystem started to take shape during autumn of 2021. A group of experienced crypto developers
and investors were exchanging ideas of what an ideal crypto project should look like. After agreeing on every
point, and coming to the conclusion that we shared the same end goal and vision, we started working on what
is now known as Shido. Our mission is to introduce and create a safe entry to crypto for investors. We seek to
make our project a safe and easy way to invest while simultaneously bridging the gap between traditional fiat
currencies and cryptocurrencies. There has never been an easier way to grow your wealth and earn passive
income. The journey for Shido is just beginning. With the help of our community, we believe we will accomplish
and achieve our goals. We want to make sure that every voice is heard, and let the community dictate the path,
in which Shido will journey. We have a lot of exciting news and a powerful roadmap to share with you
throughout the year. We look forward to this journey with each and every member of our community. You can
join the Shido Family through any of our social platforms.

| Contract Summary

Documentation Quality

Shido Inu provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Shido Inu with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 973.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 213, 227, 242, 243, 256, 268, 283, 297, 311, 325, 341, 364, 387, 413, 1008, 1010, 1014, 1024, 1024,
1024, 1037, 1037, 1049, 1237, 1239, 1281, 1290, 1398, 1432, 1440, 1449 and 1239.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1238, 1239, 1239, 1400, 1401, 1403, 1404, 1556 and 1557.

Shido Inu | Security Analysis

CONCLUSION

We have audited the Shido Inu project released on January 2023 to discover issues and identify potential
security vulnerabilities in Shido Inu Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The Shido Inu smart contract code issues do not pose a considerable risk. The writing of the contract is close
to the standard of writing contracts in general. The low-risk issues found are some arithmetic operation issues,
a state variable visibility is not set, and out-of-bounds array access which the index access expression can
cause an exception in case an invalid array index value is used. It is best practice to set the visibility of state
variables explicitly. The default visibility for "inSwapAndLiquify" is internal. Other possible visibility settings are
public and private.

Shido Inu | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Shido Inu | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Shido Inu | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Shido Inu | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Mar 03 2022 22:35:42 GMT+0000 (Coordinated Universal Time)

Finished Friday Mar 04 2022 18:05:53 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File AntiBotLiquidityGeneratorToken.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 213

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

212 unchecked {

213 uint256 c = a + b;

214 if (c < a) return (false, 0);

215 return (true, c);

216 }

217

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 227

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

226 if (b > a) return (false, 0);

227 return (true, a - b);

228 }

229 }

230

231

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 242

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

241 if (a == 0) return (true, 0);

242 uint256 c = a * b;

243 if (c / a != b) return (false, 0);

244 return (true, c);

245 }

246

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 243

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

242 uint256 c = a * b;

243 if (c / a != b) return (false, 0);

244 return (true, c);

245 }

246 }

247

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 256

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

255 if (b == 0) return (false, 0);

256 return (true, a / b);

257 }

258 }

259

260

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 268

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

267 if (b == 0) return (false, 0);

268 return (true, a % b);

269 }

270 }

271

272

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 283

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

282 function add(uint256 a, uint256 b) internal pure returns (uint256) {

283 return a + b;

284 }

285

286 /**

287

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 297

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

296 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

297 return a - b;

298 }

299

300 /**

301

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 311

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

310 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

311 return a * b;

312 }

313

314 /**

315

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 325

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

324 function div(uint256 a, uint256 b) internal pure returns (uint256) {

325 return a / b;

326 }

327

328 /**

329

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 341

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

340 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

341 return a % b;

342 }

343

344 /**

345

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 364

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

363 require(b <= a, errorMessage);

364 return a - b;

365 }

366 }

367

368

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 387

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

386 require(b > 0, errorMessage);

387 return a / b;

388 }

389 }

390

391

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 413

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

412 require(b > 0, errorMessage);

413 return a % b;

414 }

415 }

416 }

417

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1008

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1007) payable {

1008 require(taxFeeBps_ >= 0 && taxFeeBps_ <= 10**4, "Invalid tax fee");

1009 require(

1010 liquidityFeeBps_ >= 0 && liquidityFeeBps_ <= 10**4,

1011 "Invalid liquidity fee"

1012

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1010

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1009 require(

1010 liquidityFeeBps_ >= 0 && liquidityFeeBps_ <= 10**4,

1011 "Invalid liquidity fee"

1012);

1013 require(

1014

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1014

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1013 require(

1014 charityFeeBps_ >= 0 && charityFeeBps_ <= 10**4,

1015 "Invalid charity fee"

1016);

1017 if (charityAddress_ == address(0)) {

1018

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1024

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1023 require(

1024 taxFeeBps_ + liquidityFeeBps_ + charityFeeBps_ <= 10**4,

1025 "Total fee is over 100% of transfer amount"

1026);

1027

1028

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1024

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1023 require(

1024 taxFeeBps_ + liquidityFeeBps_ + charityFeeBps_ <= 10**4,

1025 "Total fee is over 100% of transfer amount"

1026);

1027

1028

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1024

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1023 require(

1024 taxFeeBps_ + liquidityFeeBps_ + charityFeeBps_ <= 10**4,

1025 "Total fee is over 100% of transfer amount"

1026);

1027

1028

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1037

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1036 _tTotal = totalSupply_;

1037 _rTotal = (MAX - (MAX % _tTotal));

1038

1039 _taxFee = taxFeeBps_;

1040 _previousTaxFee = _taxFee;

1041

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 1037

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1036 _tTotal = totalSupply_;

1037 _rTotal = (MAX - (MAX % _tTotal));

1038

1039 _taxFee = taxFeeBps_;

1040 _previousTaxFee = _taxFee;

1041

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1049

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1048

1049 numTokensSellToAddToLiquidity = totalSupply_.mul(5).div(10**4); // 0.05%

1050

1051 swapAndLiquifyEnabled = true;

1052

1053

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1237

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1236 require(_isExcluded[account], "Account is already excluded");

1237 for (uint256 i = 0; i < _excluded.length; i++) {

1238 if (_excluded[i] == account) {

1239 _excluded[i] = _excluded[_excluded.length - 1];

1240 _tOwned[account] = 0;

1241

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1239

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1238 if (_excluded[i] == account) {

1239 _excluded[i] = _excluded[_excluded.length - 1];

1240 _tOwned[account] = 0;

1241 _isExcluded[account] = false;

1242 _excluded.pop();

1243

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1281

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1280 function setTaxFeePercent(uint256 taxFeeBps) external onlyOwner {

1281 require(taxFeeBps >= 0 && taxFeeBps <= 10**4, "Invalid bps");

1282 _taxFee = taxFeeBps;

1283 }

1284

1285

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1290

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1289 require(

1290 liquidityFeeBps >= 0 && liquidityFeeBps <= 10**4,

1291 "Invalid bps"

1292);

1293 _liquidityFee = liquidityFeeBps;

1294

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1398

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1397 uint256 tSupply = _tTotal;

1398 for (uint256 i = 0; i < _excluded.length; i++) {

1399 if (

1400 _rOwned[_excluded[i]] > rSupply ||

1401 _tOwned[_excluded[i]] > tSupply

1402

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1432

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1431 function calculateTaxFee(uint256 _amount) private view returns (uint256) {

1432 return _amount.mul(_taxFee).div(10**4);

1433 }

1434

1435 function calculateLiquidityFee(uint256 _amount)

1436

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1440

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1439 {

1440 return _amount.mul(_liquidityFee).div(10**4);

1441 }

1442

1443 function calculateCharityFee(uint256 _amount)

1444

Shido Inu | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1449

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1448 if (_charityAddress == address(0)) return 0;

1449 return _amount.mul(_charityFee).div(10**4);

1450 }

1451

1452 function removeAllFee() private {

1453

Shido Inu | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1239

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1238 if (_excluded[i] == account) {

1239 _excluded[i] = _excluded[_excluded.length - 1];

1240 _tOwned[account] = 0;

1241 _isExcluded[account] = false;

1242 _excluded.pop();

1243

Shido Inu | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 973

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

972

973 bool inSwapAndLiquify;

974 bool public swapAndLiquifyEnabled;

975

976 uint256 private numTokensSellToAddToLiquidity;

977

Shido Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1238

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1237 for (uint256 i = 0; i < _excluded.length; i++) {

1238 if (_excluded[i] == account) {

1239 _excluded[i] = _excluded[_excluded.length - 1];

1240 _tOwned[account] = 0;

1241 _isExcluded[account] = false;

1242

Shido Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1239

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1238 if (_excluded[i] == account) {

1239 _excluded[i] = _excluded[_excluded.length - 1];

1240 _tOwned[account] = 0;

1241 _isExcluded[account] = false;

1242 _excluded.pop();

1243

Shido Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1239

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1238 if (_excluded[i] == account) {

1239 _excluded[i] = _excluded[_excluded.length - 1];

1240 _tOwned[account] = 0;

1241 _isExcluded[account] = false;

1242 _excluded.pop();

1243

Shido Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1400

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1399 if (

1400 _rOwned[_excluded[i]] > rSupply ||

1401 _tOwned[_excluded[i]] > tSupply

1402) return (_rTotal, _tTotal);

1403 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1404

Shido Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1401

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1400 _rOwned[_excluded[i]] > rSupply ||

1401 _tOwned[_excluded[i]] > tSupply

1402) return (_rTotal, _tTotal);

1403 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1404 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1405

Shido Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1403

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1402) return (_rTotal, _tTotal);

1403 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1404 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1405 }

1406 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1407

Shido Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1404

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1403 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1404 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1405 }

1406 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1407 return (rSupply, tSupply);

1408

Shido Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1556

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1555 address[] memory path = new address[](2);

1556 path[0] = address(this);

1557 path[1] = uniswapV2Router.WETH();

1558

1559 _approve(address(this), address(uniswapV2Router), tokenAmount);

1560

Shido Inu | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1557

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotLiquidityGeneratorToken.sol

Locations

1556 path[0] = address(this);

1557 path[1] = uniswapV2Router.WETH();

1558

1559 _approve(address(this), address(uniswapV2Router), tokenAmount);

1560

1561

Shido Inu | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Shido Inu | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

