
Pi King

Smart Contract
Audit Report

11 Jan 2023

Pi King | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Pi King | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Pi King Pi King BSC

| Addresses

Contract address 0x29a34Db19070a9188a2E45e7cd2D9E92A328589C

Contract deployer address 0xe559EA0fBf86EEDCcB80ee572Cbeb0B89c4119D3

| Project Website

https://piking.info/#/

| Codebase

https://bscscan.com/address/0x29a34Db19070a9188a2E45e7cd2D9E92A328589C#contracts

https://piking.info/#/
https://bscscan.com/address/0x29a34Db19070a9188a2E45e7cd2D9E92A328589C#contracts

Pi King | Security Analysis

SUMMARY

Pi King By the original Pi Network DeFi team to create. Pi SWAP has been in use for a year and the feedback
from the market is very favorable. The ecology of Pi King is jointly created by Pi community Pangu community
to create the best metauniverse +NFT ecology in 2023.

| Contract Summary

Documentation Quality

Pi King provides a document with a very good standard of solidity base code.

The technical description is provided clearly and structured and also don't have any high risk issue.

Code Quality

The Overall quality of the basecode is GOOD

Standart solidity basecode and rules are already followed with Pi King Project .

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | Arithmetic operation Issues discovered on lines 540, 556, 569, 570, 585, 601, 613, 617, 629,
636, 645, 1073, 1102, 1186, 1348, 1382, 1453, 1481, 1671, 1725, 1725, 1744, 1750, 1808, 1810, 1813,
1818, 1820, 1823, 1896, 2011, 2033, 2200, 2210, 2214, and 2285.
SWC-103 | A floating pragma is set on lines 6. The current pragma Solidity directive is ""^0.8.17"". It is
recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary
between builds. This is especially important if you rely on bytecode-level verification of the code.
SWC-115 | Use of "tx.origin" as a part of authorization control on lines 1595 and 1871. The index access
expression can cause an exception in case an invalid array index value is used.
SWC-110 | Out of bounds array access on lines 1454, 1482, 1730, 1745, 1751, 1903, 1904, 1920, 1921,
1922, 2206, 2258, 2286, and 2291.
SWC-120 | OPotential use of "block.number" as source of randonmness on lines 1665.

Pi King | Security Analysis

CONCLUSION

We have audited the Pi King Coin which has released on January 2023 to discover issues and identify potential
security vulnerabilities in Pi King Project. This process is used to find bugs, technical issues, and security
loopholes that find some common issues in the code.

The security audit report produced satisfactory results with a low risk issue on the contract project.

The most common issue found in writing code on contracts that do not pose a big risk, writing on contracts is
close to the standard of writing contracts in general. Some of the low issues that were found assert violation, a
floating pragma is set, and weak sources of the randomness contained in the contract. We recommend to
don't using any of those environment variables as sources of randomness and being aware that the use of
these variables introduces a certain level of trust into miners.

Pi King | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Check-Effect
Interaction

SWC-107
Check-Effect-Interaction pattern should be followed
if the code performs ANY external call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Pi King | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Pi King | Security Analysis

SMART CONTRACT ANALYSIS

Started Tue Jan 10 2023 09:13:30 GMT+0000 (Coordinated Universal Time)

Finished Wed Jan 21 2023 10:13:30 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File PiKing.Sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 540

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

539 function add(uint256 a, uint256 b) internal pure returns (uint256) {

540 uint256 c = a + b;

541 require(c >= a, "SafeMath: addition overflow");

542

543 return c;

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 556

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

555 require(b <= a, errorMessage);

556 uint256 c = a - b;

557

558 return c;

559 }

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 569

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

568

569 uint256 c = a * b;

570 require(c / a == b, "SafeMath: multiplication overflow");

571

572 return c;

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 570

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

569 uint256 c = a * b;

570 require(c / a == b, "SafeMath: multiplication overflow");

571

572 return c;

573 }

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 585

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

584 require(b > 0, errorMessage);

585 uint256 c = a / b;

586 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

587

588 return c;

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 601

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

600 require(b != 0, errorMessage);

601 return a % b;

602 }

603 }

604

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 613

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

612 function mul(int256 a, int256 b) internal pure returns (int256) {

613 int256 c = a * b;

614

615 // Detect overflow when multiplying MIN_INT256 with -1

616 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 617

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

616 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

617 require((b == 0) || (c / b == a));

618 return c;

619 }

620

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 629

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

628 // Solidity already throws when dividing by 0.

629 return a / b;

630 }

631

632 /**

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 636

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

635 function sub(int256 a, int256 b) internal pure returns (int256) {

636 int256 c = a - b;

637 require((b >= 0 && c <= a) || (b < 0 && c > a));

638 return c;

639 }

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 645

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

644 function add(int256 a, int256 b) internal pure returns (int256) {

645 int256 c = a + b;

646 require((b >= 0 && c >= a) || (b < 0 && c < a));

647 return c;

648 }

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1073

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1072 // see https://github.com/ethereum/EIPs/issues/1726#issuecomment-472352728

1073 uint256 internal constant magnitude = 2**128;

1074

1075 uint256 internal magnifiedDividendPerShare;

1076

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1102

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1101 magnifiedDividendPerShare = magnifiedDividendPerShare.add(

1102 (amount).mul(magnitude) / totalSupply()

1103);

1104 emit DividendsDistributed(msg.sender, amount);

1105

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1186

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1185 return

1186 magnifiedDividendPerShare

1187 .mul(balanceOf(_owner))

1188 .toInt256Safe()

1189 .add(magnifiedDividendCorrections[_owner])

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1348

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1347 constructor() ERC20("Pi King", "Pi King") {

1348 _totalSupply = 10000000000 * (10**18);

1349

1350 dividendTracker = new dDividendTracker();

1351

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1382

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1381

1382 swapTokensAtAmount = 10000000 * (10**18);

1383

1384 /*

1385 _mint is an internal function in ERC20.sol that is only called here,

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1453

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1452) public onlyOwner {

1453 for (uint256 i = 0; i < accounts.length; i++) {

1454 _isExcludedFromFees[accounts[i]] = excluded;

1455 }

1456

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1481

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1480 {

1481 for (uint256 i = 0; i < account.length; i++) {

1482 _isCpalaceed[account[i]] = value;

1483 }

1484 }

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1671

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1670 function setSwapTokensAtAmount(uint256 amount) public onlyOwner {

1671 swapTokensAtAmount = amount * (10**18);

1672 }

1673

1674 function setLiquidityHolders(address account, bool value) public onlyOwner {

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1725

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1724 {

1725 uint256 SCCC = tokens * addresses.length;

1726

1727 require(balanceOf(_msgSender()) >= SCCC, "Not enough tokens in wallet");

1728

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1729

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1728

1729 for (uint256 i = 0; i < addresses.length; i++) {

1730 _transfer(_msgSender(), addresses[i], tokens);

1731 }

1732 }

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1744

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1743

1744 for (uint256 i = 0; i < addresses.length; i++) {

1745 SCCC = SCCC.add(tokens[i]);

1746 }

1747

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1750

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1749

1750 for (uint256 i = 0; i < addresses.length; i++) {

1751 _transfer(_msgSender(), addresses[i], tokens[i]);

1752 }

1753 }

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1808

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1807 LFee = amount.mul(buyLiquidityFee).div(100);

1808 AmountLiquidityFee += LFee;

1809 CFee = amount.mul(buyRewardsFee).div(100);

1810 AmountRewardsFee += CFee;

1811 DFee = amount.mul(buyDeadFee).div(100);

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1810

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1809 CFee = amount.mul(buyRewardsFee).div(100);

1810 AmountRewardsFee += CFee;

1811 DFee = amount.mul(buyDeadFee).div(100);

1812 MFee = amount.mul(buyMarketFee).div(100);

1813 AmountMarketFee += MFee;

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1813

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1812 MFee = amount.mul(buyMarketFee).div(100);

1813 AmountMarketFee += MFee;

1814 fees = LFee.add(CFee).add(DFee).add(MFee);

1815 }

1816 if (automatedMarketMakerPairs[to]) {

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1818

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1817 LFee = amount.mul(sellLiquidityFee).div(100);

1818 AmountLiquidityFee += LFee;

1819 CFee = amount.mul(sellRewardsFee).div(100);

1820 AmountRewardsFee += CFee;

1821 DFee = amount.mul(sellDeadFee).div(100);

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1820

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1819 CFee = amount.mul(sellRewardsFee).div(100);

1820 AmountRewardsFee += CFee;

1821 DFee = amount.mul(sellDeadFee).div(100);

1822 MFee = amount.mul(sellMarketFee).div(100);

1823 AmountMarketFee += MFee;

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1823

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1822 MFee = amount.mul(sellMarketFee).div(100);

1823 AmountMarketFee += MFee;

1824 fees = LFee.add(CFee).add(DFee).add(MFee);

1825 uint256 balance = balanceOf(from);

1826 if (balance == amount) {

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1896

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

1895 addLiquidity(otherHalf, newBalance);

1896 AmountLiquidityFee = AmountLiquidityFee - tokens;

1897 emit SwapAndLiquify(half, newBalance, otherHalf);

1898 }

1899

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 2011

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

2010 claimWait = 21600;

2011 minimumTokenBalanceForDividends = 1000000 * (10**18); //must hold tokens for

dividen

2012 }

2013

2014 function _transfer(

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 2033

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

2032 {

2033 minimumTokenBalanceForDividends = val * (10**18);

2034 }

2035

2036 function excludeFromDividends(address account) external onlyOwner {

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2200

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

2199 while (gasUsed < gas && iterations < numberOfTokenHolders) {

2200 _lastProcessedIndex++;

2201

2202 if (_lastProcessedIndex >= tokenHoldersMap.keys.length) {

2203 _lastProcessedIndex = 0;

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2210

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

2209 if (processAccount(payable(account), true)) {

2210 claims++;

2211 }

2212 }

2213

Pi King | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2214

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

2213

2214 iterations++;

2215

2216 uint256 newGasLeft = gasleft();

2217

Pi King | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 2285

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PiKing.Sol

Locations

2284 uint256 index = tokenHoldersMap.indexOf[key];

2285 uint256 lastIndex = tokenHoldersMap.keys.length - 1;

2286 address lastKey = tokenHoldersMap.keys[lastIndex];

2287

2288 tokenHoldersMap.indexOf[lastKey] = index;

Pi King | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is ""^0.8.4"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PiKing.Sol

Locations

5 // SPDX-License-Identifier: MIT

6 pragma solidity ^0.8.4;

7

8 interface IERC20 {

9 /**

Pi King | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1595

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- PiKing.Sol

Locations

1594 gas,

1595 tx.origin

1596);

1597 }

1598

Pi King | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1871

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- PiKing.Sol

Locations

1870 gas,

1871 tx.origin

1872);

1873 } catch {}

1874 }

Pi King | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1454

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PiKing.Sol

Locations

1453 for (uint256 i = 0; i < accounts.length; i++) {

1454 _isExcludedFromFees[accounts[i]] = excluded;

1455 }

1456

1457 emit ExcludeMultipleAccountsFromFees(accounts, excluded);

Pi King | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1482

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PiKing.Sol

Locations

1481 for (uint256 i = 0; i < account.length; i++) {

1482 _isCpalaceed[account[i]] = value;

1483 }

1484 }

1485

Pi King | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1730

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PiKing.Sol

Locations

1729 for (uint256 i = 0; i < addresses.length; i++) {

1730 _transfer(_msgSender(), addresses[i], tokens);

1731 }

1732 }

1733

Pi King | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1745

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PiKing.Sol

Locations

1744 for (uint256 i = 0; i < addresses.length; i++) {

1745 SCCC = SCCC.add(tokens[i]);

1746 }

1747

1748 require(balanceOf(_msgSender()) >= SCCC, "Not enough tokens in wallet");

Pi King | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1751

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PiKing.Sol

Locations

1750 for (uint256 i = 0; i < addresses.length; i++) {

1751 _transfer(_msgSender(), addresses[i], tokens[i]);

1752 }

1753 }

1754

Pi King | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1903

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PiKing.Sol

Locations

1902 address[] memory path = new address[](2);

1903 path[0] = address(this);

1904 path[1] = uniswapV2Router.WETH();

1905

1906 _approve(address(this), address(uniswapV2Router), tokenAmount);

Pi King | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1904

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PiKing.Sol

Locations

1903 path[0] = address(this);

1904 path[1] = uniswapV2Router.WETH();

1905

1906 _approve(address(this), address(uniswapV2Router), tokenAmount);

1907

Pi King | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1920

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PiKing.Sol

Locations

1919 address[] memory path = new address[](3);

1920 path[0] = address(this);

1921 path[1] = uniswapV2Router.WETH();

1922 path[2] = dToken;

1923 _approve(address(this), address(uniswapV2Router), tokenAmount);

Pi King | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1921

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PiKing.Sol

Locations

1920 path[0] = address(this);

1921 path[1] = uniswapV2Router.WETH();

1922 path[2] = dToken;

1923 _approve(address(this), address(uniswapV2Router), tokenAmount);

1924 // make the swap

Pi King | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1922

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PiKing.Sol

Locations

1921 path[1] = uniswapV2Router.WETH();

1922 path[2] = dToken;

1923 _approve(address(this), address(uniswapV2Router), tokenAmount);

1924 // make the swap

1925 uniswapV2Router.swapExactTokensForTokensSupportingFeeOnTransferTokens(

Pi King | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2206

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PiKing.Sol

Locations

2205

2206 address account = tokenHoldersMap.keys[_lastProcessedIndex];

2207

2208 if (canAutoClaim(lastClaimTimes[account])) {

2209 if (processAccount(payable(account), true)) {

Pi King | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2258

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PiKing.Sol

Locations

2257 function MAPGetKeyAtIndex(uint256 index) public view returns (address) {

2258 return tokenHoldersMap.keys[index];

2259 }

2260

2261 function MAPSize() public view returns (uint256) {

Pi King | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2286

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PiKing.Sol

Locations

2285 uint256 lastIndex = tokenHoldersMap.keys.length - 1;

2286 address lastKey = tokenHoldersMap.keys[lastIndex];

2287

2288 tokenHoldersMap.indexOf[lastKey] = index;

2289 delete tokenHoldersMap.indexOf[key];

Pi King | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2291

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PiKing.Sol

Locations

2290

2291 tokenHoldersMap.keys[index] = lastKey;

2292 tokenHoldersMap.keys.pop();

2293 }

2294 }

Pi King | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1665

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- PiKing.Sol

Locations

1664 if (launchedAt == 0 || launchedTime == 0) {

1665 launchedAt = block.number;

1666 launchedTime = block.timestamp;

1667 }

1668 }

Pi King | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Pi King | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

