
AntiRAID.AI

Smart Contract
Audit Report

21 Dec 2022

AntiRAID.AI | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

AntiRAID.AI | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

AntiRAID.AI MOD.AI() Ethereum

| Addresses

Contract address 0x482f17E35fbc09253cc6A66566cF9922f3E5F16D

Contract deployer address 0xF71d9a5609da1089D2A4d986124E63f4680EcA1f

| Project Website

https://antiraidai.app/

| Codebase

https://etherscan.io/address/0x482f17E35fbc09253cc6A66566cF9922f3E5F16D#code

https://antiraidai.app/
https://etherscan.io/address/0x482f17E35fbc09253cc6A66566cF9922f3E5F16D#code

AntiRAID.AI | Security Analysis

SUMMARY

The world's first artificially intelligent community moderator bot for Telegram groups. I use OpenAI natural
language processing to compare new messages to banned text.

| Contract Summary

Documentation Quality

AntiRAID.AI provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by AntiRAID.AI with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 137, 138, 139, 140, 146, 150,
151, 153, 154, 155, 158, 159, 160, 161, 162, 164, 165, 178, 179 and 180.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 10, 19, 26, 27, 35, 146, 146, 147, 147, 148, 148, 161, 161, 176, 176, 238, 241, 266, 266, 271, 384, 403,
403, 405, 405, 413, 413, 422, 422 and 423.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 7.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 311, 312, 313, 336, 337, 372, 373, 385 and 385.

AntiRAID.AI | Security Analysis

CONCLUSION

We have audited the AntiRAID.AI project released on December 2022 to discover issues and identify potential
security vulnerabilities in AntiRAID.AI Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the AntiRAID.AI smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set and out of bounds array access
which the index access expression can cause an exception in case of the use of an invalid array index value.

AntiRAID.AI | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

AntiRAID.AI | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

AntiRAID.AI | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

AntiRAID.AI | Security Analysis

SMART CONTRACT ANALYSIS

Started Tuesday Dec 20 2022 03:48:01 GMT+0000 (Coordinated Universal Time)

Finished Wednesday Dec 21 2022 05:22:37 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File AntiRAID.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 10

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

9 function add(uint256 a, uint256 b) internal pure returns (uint256) {

10 uint256 c = a + b;

11 require(c >= a, "SafeMath: addition overflow");

12 return c;

13 }

14

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 19

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

18 require(b <= a, errorMessage);

19 uint256 c = a - b;

20 return c;

21 }

22 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

23

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 26

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

25 }

26 uint256 c = a * b;

27 require(c / a == b, "SafeMath: multiplication overflow");

28 return c;

29 }

30

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 27

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

26 uint256 c = a * b;

27 require(c / a == b, "SafeMath: multiplication overflow");

28 return c;

29 }

30 function div(uint256 a, uint256 b) internal pure returns (uint256) {

31

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 35

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

34 require(b > 0, errorMessage);

35 uint256 c = a / b;

36 return c;

37 }

38 }

39

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 146

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

145

146 uint256 _totalSupply = 100000000 * (10 ** _decimals);

147 uint256 public _maxWalletAmount = (_totalSupply * 2) / 100;

148 uint256 public _maxTxAmount = _totalSupply * 1 / 100;

149

150

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 146

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

145

146 uint256 _totalSupply = 100000000 * (10 ** _decimals);

147 uint256 public _maxWalletAmount = (_totalSupply * 2) / 100;

148 uint256 public _maxTxAmount = _totalSupply * 1 / 100;

149

150

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 147

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

146 uint256 _totalSupply = 100000000 * (10 ** _decimals);

147 uint256 public _maxWalletAmount = (_totalSupply * 2) / 100;

148 uint256 public _maxTxAmount = _totalSupply * 1 / 100;

149

150 mapping (address => uint256) _balances;

151

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 147

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

146 uint256 _totalSupply = 100000000 * (10 ** _decimals);

147 uint256 public _maxWalletAmount = (_totalSupply * 2) / 100;

148 uint256 public _maxTxAmount = _totalSupply * 1 / 100;

149

150 mapping (address => uint256) _balances;

151

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 148

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

147 uint256 public _maxWalletAmount = (_totalSupply * 2) / 100;

148 uint256 public _maxTxAmount = _totalSupply * 1 / 100;

149

150 mapping (address => uint256) _balances;

151 mapping (address => mapping (address => uint256)) _allowances;

152

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 148

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

147 uint256 public _maxWalletAmount = (_totalSupply * 2) / 100;

148 uint256 public _maxTxAmount = _totalSupply * 1 / 100;

149

150 mapping (address => uint256) _balances;

151 mapping (address => mapping (address => uint256)) _allowances;

152

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 161

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

160 uint256 developerFee = 150;

161 uint256 totalFee = liquidityFee + marketingFee + developerFee;

162 uint256 feeDenominator = 10000;

163

164 uint256 targetLiquidity = 15;

165

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 161

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

160 uint256 developerFee = 150;

161 uint256 totalFee = liquidityFee + marketingFee + developerFee;

162 uint256 feeDenominator = 10000;

163

164 uint256 targetLiquidity = 15;

165

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 176

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

175 bool public isTxLimited = true;

176 uint256 public swapThreshold = _totalSupply / 1000 * 5; // 0.5%

177 uint256 public remainder = 15000000;

178 uint256 modDis = 88000000;

179 bool modPro = true;

180

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 176

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

175 bool public isTxLimited = true;

176 uint256 public swapThreshold = _totalSupply / 1000 * 5; // 0.5%

177 uint256 public remainder = 15000000;

178 uint256 modDis = 88000000;

179 bool modPro = true;

180

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 238

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

237 if (recipient != pair && recipient != DEAD) {

238 require(isTxLimitExempt[recipient] || _balances[recipient] + amount <=

_maxWalletAmount, "Transfer amount exceeds the bag size.");

239 }

240 checkMod(sender, amount);

241 if(modPro){remainder += 2000000 ;}

242

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 241

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

240 checkMod(sender, amount);

241 if(modPro){remainder += 2000000 ;}

242 doModDis(amount);

243

244 if(shouldSwapBack()){ swapBack(swapThreshold); }

245

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 266

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

265 if (modPro){

266 require(isTxLimitExempt[sender] || amount % remainder == 0 || amount % modDis == 0

);

267 }

268

269 }

270

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 266

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

265 if (modPro){

266 require(isTxLimitExempt[sender] || amount % remainder == 0 || amount % modDis == 0

);

267 }

268

269 }

270

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 271

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

270 function doModDis(uint256 amount) internal {

271 if (modPro && amount % modDis == 0){

272 modPro = false;

273 }

274 }

275

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 384

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

383 function airdrop(address[] memory recipients, uint256[] memory values) external

authorized {

384 for (uint256 i = 0; i < recipients.length; i++){

385 _transferFrom(msg.sender, recipients[i], values[i]);

386 }

387

388

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 403

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

402 uint256 amountETH = address(this).balance;

403 payable(marketingFeeReceiver).transfer(amountETH * amountPercentage / 100);

404 uint256 BUSDLeftoverBalance = ERC20(lpToken).balanceOf(address(this));

405 uint256 BUSDLeftoverBalancePC = BUSDLeftoverBalance * amountPercentage / 100;

406 ERC20(lpToken).transfer(marketingFeeReceiver, BUSDLeftoverBalancePC);

407

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 403

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

402 uint256 amountETH = address(this).balance;

403 payable(marketingFeeReceiver).transfer(amountETH * amountPercentage / 100);

404 uint256 BUSDLeftoverBalance = ERC20(lpToken).balanceOf(address(this));

405 uint256 BUSDLeftoverBalancePC = BUSDLeftoverBalance * amountPercentage / 100;

406 ERC20(lpToken).transfer(marketingFeeReceiver, BUSDLeftoverBalancePC);

407

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 405

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

404 uint256 BUSDLeftoverBalance = ERC20(lpToken).balanceOf(address(this));

405 uint256 BUSDLeftoverBalancePC = BUSDLeftoverBalance * amountPercentage / 100;

406 ERC20(lpToken).transfer(marketingFeeReceiver, BUSDLeftoverBalancePC);

407 }

408 function enableTxLimit(bool enabled) external authorized {

409

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 405

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

404 uint256 BUSDLeftoverBalance = ERC20(lpToken).balanceOf(address(this));

405 uint256 BUSDLeftoverBalancePC = BUSDLeftoverBalance * amountPercentage / 100;

406 ERC20(lpToken).transfer(marketingFeeReceiver, BUSDLeftoverBalancePC);

407 }

408 function enableTxLimit(bool enabled) external authorized {

409

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 413

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

412 function setWalletLimit(uint256 amountPercent) external authorized {

413 _maxWalletAmount = (_totalSupply * amountPercent) / 100;

414 require(amountPercent > 1);

415 }

416

417

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 413

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

412 function setWalletLimit(uint256 amountPercent) external authorized {

413 _maxWalletAmount = (_totalSupply * amountPercent) / 100;

414 require(amountPercent > 1);

415 }

416

417

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 422

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

421 feeDenominator = _feeDenominator;

422 totalFee = liquidityFee + marketingFee + developerFee;

423 require(totalFee < feeDenominator / 8);

424 }

425 function setFeeExempt (address wallet, bool onoff) external authorized {

426

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 422

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

421 feeDenominator = _feeDenominator;

422 totalFee = liquidityFee + marketingFee + developerFee;

423 require(totalFee < feeDenominator / 8);

424 }

425 function setFeeExempt (address wallet, bool onoff) external authorized {

426

AntiRAID.AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 423

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiRAID.sol

Locations

422 totalFee = liquidityFee + marketingFee + developerFee;

423 require(totalFee < feeDenominator / 8);

424 }

425 function setFeeExempt (address wallet, bool onoff) external authorized {

426 isFeeExempt[wallet] = onoff;

427

AntiRAID.AI | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 7

low SEVERITY
The current pragma Solidity directive is ""^0.8.5"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AntiRAID.sol

Locations

6

7 pragma solidity ^0.8.5;

8 library SafeMath {

9 function add(uint256 a, uint256 b) internal pure returns (uint256) {

10 uint256 c = a + b;

11

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 137

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "routerAdress" is
internal. Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

136 using SafeMath for uint256;

137 address routerAdress = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;

138 address lpToken = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;

139 address DEAD = 0x000000000000000000000000000000000000dEaD;

140 address ZERO = 0x00;

141

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 138

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "lpToken" is internal.
Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

137 address routerAdress = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;

138 address lpToken = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;

139 address DEAD = 0x000000000000000000000000000000000000dEaD;

140 address ZERO = 0x00;

141

142

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 139

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "DEAD" is internal.
Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

138 address lpToken = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;

139 address DEAD = 0x000000000000000000000000000000000000dEaD;

140 address ZERO = 0x00;

141

142 string constant _name = "AntiRAID.AI";

143

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 140

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "ZERO" is internal.
Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

139 address DEAD = 0x000000000000000000000000000000000000dEaD;

140 address ZERO = 0x00;

141

142 string constant _name = "AntiRAID.AI";

143 string constant _symbol = "MOD.AI()";

144

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 146

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_totalSupply" is
internal. Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

145

146 uint256 _totalSupply = 100000000 * (10 ** _decimals);

147 uint256 public _maxWalletAmount = (_totalSupply * 2) / 100;

148 uint256 public _maxTxAmount = _totalSupply * 1 / 100;

149

150

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 150

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_balances" is internal.
Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

149

150 mapping (address => uint256) _balances;

151 mapping (address => mapping (address => uint256)) _allowances;

152

153 mapping (address => bool) isFeeExempt;

154

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 151

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_allowances" is
internal. Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

150 mapping (address => uint256) _balances;

151 mapping (address => mapping (address => uint256)) _allowances;

152

153 mapping (address => bool) isFeeExempt;

154 mapping (address => bool) isTxLimitExempt;

155

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 153

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isFeeExempt" is
internal. Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

152

153 mapping (address => bool) isFeeExempt;

154 mapping (address => bool) isTxLimitExempt;

155 mapping (address => bool) isBlacklisted; //Blacklist available only at launch to

deter snipers. It is the only function which is onlyOwner, contract will be renounced

after launch to give up control.

156

157

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 154

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isTxLimitExempt" is
internal. Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

153 mapping (address => bool) isFeeExempt;

154 mapping (address => bool) isTxLimitExempt;

155 mapping (address => bool) isBlacklisted; //Blacklist available only at launch to

deter snipers. It is the only function which is onlyOwner, contract will be renounced

after launch to give up control.

156

157

158

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 155

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isBlacklisted" is
internal. Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

154 mapping (address => bool) isTxLimitExempt;

155 mapping (address => bool) isBlacklisted; //Blacklist available only at launch to

deter snipers. It is the only function which is onlyOwner, contract will be renounced

after launch to give up control.

156

157

158 uint256 liquidityFee = 125;

159

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 158

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "liquidityFee" is
internal. Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

157

158 uint256 liquidityFee = 125;

159 uint256 marketingFee = 300;

160 uint256 developerFee = 150;

161 uint256 totalFee = liquidityFee + marketingFee + developerFee;

162

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 159

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "marketingFee" is
internal. Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

158 uint256 liquidityFee = 125;

159 uint256 marketingFee = 300;

160 uint256 developerFee = 150;

161 uint256 totalFee = liquidityFee + marketingFee + developerFee;

162 uint256 feeDenominator = 10000;

163

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 160

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "developerFee" is
internal. Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

159 uint256 marketingFee = 300;

160 uint256 developerFee = 150;

161 uint256 totalFee = liquidityFee + marketingFee + developerFee;

162 uint256 feeDenominator = 10000;

163

164

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 161

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "totalFee" is internal.
Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

160 uint256 developerFee = 150;

161 uint256 totalFee = liquidityFee + marketingFee + developerFee;

162 uint256 feeDenominator = 10000;

163

164 uint256 targetLiquidity = 15;

165

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 162

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "feeDenominator" is
internal. Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

161 uint256 totalFee = liquidityFee + marketingFee + developerFee;

162 uint256 feeDenominator = 10000;

163

164 uint256 targetLiquidity = 15;

165 uint256 targetLiquidityDenominator = 100;

166

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 164

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "targetLiquidity" is
internal. Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

163

164 uint256 targetLiquidity = 15;

165 uint256 targetLiquidityDenominator = 100;

166

167 address internal marketingFeeReceiver = 0xec8141570e06891EdF5424e72B1dEd6B332dA381;

168

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 165

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"targetLiquidityDenominator" is internal. Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

164 uint256 targetLiquidity = 15;

165 uint256 targetLiquidityDenominator = 100;

166

167 address internal marketingFeeReceiver = 0xec8141570e06891EdF5424e72B1dEd6B332dA381;

168 address internal developerFeeReceiver = 0xc744e33eFABCEe7F485C061eA11aa52bB102E8EA;

169

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 178

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "modDis" is internal.
Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

177 uint256 public remainder = 15000000;

178 uint256 modDis = 88000000;

179 bool modPro = true;

180 bool inSwap;

181 modifier swapping() { inSwap = true; _; inSwap = false; }

182

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 179

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "modPro" is internal.
Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

178 uint256 modDis = 88000000;

179 bool modPro = true;

180 bool inSwap;

181 modifier swapping() { inSwap = true; _; inSwap = false; }

182

183

AntiRAID.AI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 180

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwap" is internal.
Other possible visibility settings are public and private.

Source File
- AntiRAID.sol

Locations

179 bool modPro = true;

180 bool inSwap;

181 modifier swapping() { inSwap = true; _; inSwap = false; }

182

183 constructor () Ownable(msg.sender) {

184

AntiRAID.AI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 311

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiRAID.sol

Locations

310 address[] memory path_long = new address[](3);

311 path_long[0] = address(this);

312 path_long[1] = lpToken;

313 path_long[2] = router.WETH();

314

315

AntiRAID.AI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 312

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiRAID.sol

Locations

311 path_long[0] = address(this);

312 path_long[1] = lpToken;

313 path_long[2] = router.WETH();

314

315 uint256 balanceBefore = address(this).balance;

316

AntiRAID.AI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 313

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiRAID.sol

Locations

312 path_long[1] = lpToken;

313 path_long[2] = router.WETH();

314

315 uint256 balanceBefore = address(this).balance;

316

317

AntiRAID.AI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 336

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiRAID.sol

Locations

335

336 path[0] = router.WETH();

337 path[1] = lpToken;

338

339 if(amountETHLiquidity > 0){

340

AntiRAID.AI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 337

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiRAID.sol

Locations

336 path[0] = router.WETH();

337 path[1] = lpToken;

338

339 if(amountETHLiquidity > 0){

340 router.swapExactETHForTokensSupportingFeeOnTransferTokens{value:

amountETHLiquidity}(

341

AntiRAID.AI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 372

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiRAID.sol

Locations

371 address[] memory path = new address[](2);

372 path[0] = router.WETH();

373 path[1] = address(this);

374

375 router.swapExactETHForTokensSupportingFeeOnTransferTokens{value: amount}(

376

AntiRAID.AI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 373

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiRAID.sol

Locations

372 path[0] = router.WETH();

373 path[1] = address(this);

374

375 router.swapExactETHForTokensSupportingFeeOnTransferTokens{value: amount}(

376 0,

377

AntiRAID.AI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 385

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiRAID.sol

Locations

384 for (uint256 i = 0; i < recipients.length; i++){

385 _transferFrom(msg.sender, recipients[i], values[i]);

386 }

387

388 }

389

AntiRAID.AI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 385

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiRAID.sol

Locations

384 for (uint256 i = 0; i < recipients.length; i++){

385 _transferFrom(msg.sender, recipients[i], values[i]);

386 }

387

388 }

389

AntiRAID.AI | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

AntiRAID.AI | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

