
Coinhound

Smart Contract
Audit Report

22 Jan 2023

Coinhound | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Coinhound | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Coinhound CND BSC

| Addresses

Contract address 0x4a7DbA30250aBE3CAbe3d3809CF843aa0394623F

Contract deployer address 0xf4D0bE5E827f0cB2EF7c1165560990B1e63A9251

| Project Website

https://coinhound.io/

| Codebase

https://bscscan.com/address/0x4a7DbA30250aBE3CAbe3d3809CF843aa0394623F#code

https://coinhound.io/
https://bscscan.com/address/0x4a7DbA30250aBE3CAbe3d3809CF843aa0394623F#code

Coinhound | Security Analysis

SUMMARY

Coinhound is on a mission, to make the decentralized space fun, safer, and smarter for everyone. Coinhound is
the first GameFi dApp (Decentralized application) that users can use to scan and track important information
all across the blockchain network. We are community driven, one of a kind, and committed to delivering a
game changing product. Unlocked tokens are now locked in Mudra locker, check our Telegram for TXN.

| Contract Summary

Documentation Quality

Coinhound provides a document with an excellent standard of solidity base code.

The technical description is clearly structured and has some low-risk issues.

Code Quality

The Overall quality of the basecode is GOOD

Standard solidity basecode and rules are already followed with the Coinhound project.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | Arithmetic operation Issues discovered on lines 445, 455, 463, 482, 484, 496, 497, 511, 513,
612, 613, 633, 634, 636, 637, 671, 676, 678, 684, 689, 691, 752, 753, 754, 757, 762, 762, 781, 782, 797,
804, 805, 820, 848, 875, 876, 879, 880, 810, 811, 838, and 839.

Coinhound | Security Analysis

CONCLUSION

We have audited the Coinhound project released on January 2023 to discover issues and identify potential
security vulnerabilities in Coinhound Project. This process finds bugs, technical issues, and security loopholes
that find some common issues in the code.

The security audit report produced satisfactory results with a low risk issue on the contract project.

The most common issue found in writing code on contracts that do not pose a big risk, writing on contracts is
close to the standard of writing contracts in general. Some of the common issues that were found were integer
overflow and underflow. We recommend functions and state variables visibility should be set explicitly.
Visibility levels should be specified consciously

Coinhound | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Check-Effect
Interaction

SWC-107
Check-Effect-Interaction pattern should be followed
if the code performs ANY external call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Coinhound | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

Coinhound | Security Analysis

SMART CONTRACT ANALYSIS

Started Sat Jan 21 2023 02:23:08 GMT+0000 (Coordinated Universal Time)

Finished Sun Jan 22 2023 03:33:18 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Cnd.Sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 445

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

444 unchecked {

445 _approve(sender, _msgSender(), currentAllowance - amount);

446 }

447 }

448

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 455

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

454 function increaseAllowance(address spender, uint256 addedValue) public virtual

returns (bool) {

455 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

456 return true;

457 }

458

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 463

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

462 unchecked {

463 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

464 }

465

466 return true;

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 482

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

481 unchecked {

482 _balances[sender] = senderBalance - amount;

483 }

484 _balances[recipient] += amount;

485

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 484

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

483 }

484 _balances[recipient] += amount;

485

486 emit Transfer(sender, recipient, amount);

487

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 496

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

495

496 _totalSupply += amount;

497 _balances[account] += amount;

498 emit Transfer(address(0), account, amount);

499

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 497

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

496 _totalSupply += amount;

497 _balances[account] += amount;

498 emit Transfer(address(0), account, amount);

499

500 _afterTokenTransfer(address(0), account, amount);

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 511

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

510 unchecked {

511 _balances[account] = accountBalance - amount;

512 }

513 _totalSupply -= amount;

514

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 513

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

512 }

513 _totalSupply -= amount;

514

515 emit Transfer(account, address(0), amount);

516

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 612

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

611

612 _totalFeesOnBuy = liquidityFeeOnBuy + marketingFeeOnBuy;

613 _totalFeesOnSell = liquidityFeeOnSell + marketingFeeOnSell;

614

615 walletToWalletTransferFee = 0;

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 613

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

612 _totalFeesOnBuy = liquidityFeeOnBuy + marketingFeeOnBuy;

613 _totalFeesOnSell = liquidityFeeOnSell + marketingFeeOnSell;

614

615 walletToWalletTransferFee = 0;

616

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 633

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

632

633 _mint(owner(), 1e9 * (10 ** decimals()));

634 swapTokensAtAmount = totalSupply() / 5_000;

635

636 maxTransactionAmountBuy = totalSupply() * 20 / 1000;

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 634

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

633 _mint(owner(), 1e9 * (10 ** decimals()));

634 swapTokensAtAmount = totalSupply() / 5_000;

635

636 maxTransactionAmountBuy = totalSupply() * 20 / 1000;

637 maxTransactionAmountSell = totalSupply() * 20 / 1000;

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 636

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

635

636 maxTransactionAmountBuy = totalSupply() * 20 / 1000;

637 maxTransactionAmountSell = totalSupply() * 20 / 1000;

638

639 swapEnabled = true;

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 637

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

636 maxTransactionAmountBuy = totalSupply() * 20 / 1000;

637 maxTransactionAmountSell = totalSupply() * 20 / 1000;

638

639 swapEnabled = true;

640 }

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 671

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

670 function updateBuyFees(uint256 _liquidityFeeOnBuy, uint256 _marketingFeeOnBuy)

external onlyOwner {

671 uint256 oldFee = _totalFeesOnBuy + _totalFeesOnSell;

672

673 liquidityFeeOnBuy = _liquidityFeeOnBuy;

674 marketingFeeOnBuy = _marketingFeeOnBuy;

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 676

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

675

676 _totalFeesOnBuy = liquidityFeeOnBuy + marketingFeeOnBuy;

677

678 require(_totalFeesOnBuy + _totalFeesOnSell <= oldFee, "Total Fees cannot exceed the

old fee");

679

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 678

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

677

678 require(_totalFeesOnBuy + _totalFeesOnSell <= oldFee, "Total Fees cannot exceed the

old fee");

679

680 emit UpdateBuyFees(liquidityFeeOnBuy, marketingFeeOnBuy);

681 }

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 684

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

683 function updateSellFees(uint256 _liquidityFeeOnSell, uint256 _marketingFeeOnSell)

external onlyOwner {

684 uint256 oldFee = _totalFeesOnBuy + _totalFeesOnSell;

685

686 liquidityFeeOnSell = _liquidityFeeOnSell;

687 marketingFeeOnSell = _marketingFeeOnSell;

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 689

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

688

689 _totalFeesOnSell = liquidityFeeOnSell + marketingFeeOnSell;

690

691 require(_totalFeesOnBuy + _totalFeesOnSell <= oldFee, "Total Fees cannot exceed the

old fee");

692

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 691

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

690

691 require(_totalFeesOnBuy + _totalFeesOnSell <= oldFee, "Total Fees cannot exceed the

old fee");

692

693 emit UpdateSellFees(liquidityFeeOnSell, marketingFeeOnSell);

694 }

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 747

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

746 to == uniswapV2Pair &&

747 _totalFeesOnBuy + _totalFeesOnSell > 0 &&

748 swapEnabled

749) {

750 swapping = true;

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 752

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

751

752 uint256 totalFee = _totalFeesOnBuy + _totalFeesOnSell;

753 uint256 liquidityShare = liquidityFeeOnBuy + liquidityFeeOnSell;

754 uint256 marketingShare = marketingFeeOnBuy + marketingFeeOnSell;

755

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 753

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

752 uint256 totalFee = _totalFeesOnBuy + _totalFeesOnSell;

753 uint256 liquidityShare = liquidityFeeOnBuy + liquidityFeeOnSell;

754 uint256 marketingShare = marketingFeeOnBuy + marketingFeeOnSell;

755

756 if (liquidityShare > 0) {

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 754

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

753 uint256 liquidityShare = liquidityFeeOnBuy + liquidityFeeOnSell;

754 uint256 marketingShare = marketingFeeOnBuy + marketingFeeOnSell;

755

756 if (liquidityShare > 0) {

757 uint256 liquidityTokens = contractTokenBalance * liquidityShare / totalFee;

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 757

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

756 if (liquidityShare > 0) {

757 uint256 liquidityTokens = contractTokenBalance * liquidityShare / totalFee;

758 swapAndLiquify(liquidityTokens);

759 }

760

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 762

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

761 if (marketingShare > 0) {

762 uint256 marketingTokens = contractTokenBalance * marketingShare / totalFee;

763 swapAndSendMarketing(marketingTokens);

764 }

765

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 762

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

761 if (marketingShare > 0) {

762 uint256 marketingTokens = contractTokenBalance * marketingShare / totalFee;

763 swapAndSendMarketing(marketingTokens);

764 }

765

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 781

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

780 if (_totalFees > 0) {

781 uint256 fees = (amount * _totalFees) / 100;

782 amount = amount - fees;

783 super._transfer(from, address(this), fees);

784 }

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 782

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

781 uint256 fees = (amount * _totalFees) / 100;

782 amount = amount - fees;

783 super._transfer(from, address(this), fees);

784 }

785

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 797

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

796 function setSwapTokensAtAmount(uint256 newAmount) external onlyOwner{

797 require(newAmount > totalSupply() / 1_000_000, "SwapTokensAtAmount must be greater

than 0.0001% of total supply");

798 swapTokensAtAmount = newAmount;

799

800 emit SwapTokensAtAmountUpdated(swapTokensAtAmount);

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 804

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

803 function swapAndLiquify(uint256 tokens) private {

804 uint256 half = tokens / 2;

805 uint256 otherHalf = tokens - half;

806

807 uint256 initialBalance = address(this).balance;

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 805

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

804 uint256 half = tokens / 2;

805 uint256 otherHalf = tokens - half;

806

807 uint256 initialBalance = address(this).balance;

808

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 820

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

819

820 uint256 newBalance = address(this).balance - initialBalance;

821

822 uniswapV2Router.addLiquidityETH{value: newBalance}(

823 address(this),

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 848

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

847

848 uint256 newBalance = address(this).balance - initialBalance;

849

850 payable(marketingWallet).sendValue(newBalance);

851

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 875

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

874 require(

875 _maxTransactionAmountBuy >= (totalSupply() / (10 ** decimals())) / 1_000 &&

876 _maxTransactionAmountSell >= (totalSupply() / (10 ** decimals())) / 1_000,

877 "Max Transaction limis cannot be lower than 0.1% of total supply"

878);

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 876

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

875 _maxTransactionAmountBuy >= (totalSupply() / (10 ** decimals())) / 1_000 &&

876 _maxTransactionAmountSell >= (totalSupply() / (10 ** decimals())) / 1_000,

877 "Max Transaction limis cannot be lower than 0.1% of total supply"

878);

879 maxTransactionAmountBuy = _maxTransactionAmountBuy * (10 ** decimals());

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 879

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

878);

879 maxTransactionAmountBuy = _maxTransactionAmountBuy * (10 ** decimals());

880 maxTransactionAmountSell = _maxTransactionAmountSell * (10 ** decimals());

881

882 emit MaxTransactionLimitAmountChanged(maxTransactionAmountBuy,

maxTransactionAmountSell);

Coinhound | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 880

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- cnd.sol

Locations

879 maxTransactionAmountBuy = _maxTransactionAmountBuy * (10 ** decimals());

880 maxTransactionAmountSell = _maxTransactionAmountSell * (10 ** decimals());

881

882 emit MaxTransactionLimitAmountChanged(maxTransactionAmountBuy,

maxTransactionAmountSell);

883 }

Coinhound | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 810

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- cnd.sol

Locations

809 address[] memory path = new address[](2);

810 path[0] = address(this);

811 path[1] = uniswapV2Router.WETH();

812

813 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

Coinhound | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 811

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- cnd.sol

Locations

810 path[0] = address(this);

811 path[1] = uniswapV2Router.WETH();

812

813 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

814 half,

Coinhound | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 838

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- cnd.sol

Locations

837 address[] memory path = new address[](2);

838 path[0] = address(this);

839 path[1] = uniswapV2Router.WETH();

840

841 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

Coinhound | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 839

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- cnd.sol

Locations

838 path[0] = address(this);

839 path[1] = uniswapV2Router.WETH();

840

841 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

842 tokenAmount,

Coinhound | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Coinhound | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

