
SURGE

Smart Contract
Audit Report

13 Jan 2023

SURGE | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

SURGE | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

SURGE SRG Binance Smart Chain

| Addresses

Contract address 0x9f19c8e321bd14345b797d43e01f0eed030f5bff

Contract deployer address 0xc207cd3f61Da958AA6f4209C5f0a145C056B576f

| Project Website

https://surgeprotocol.io/

| Codebase

https://bscscan.com/address/0x9f19c8e321bd14345b797d43e01f0eed030f5bff#code

https://surgeprotocol.io/
https://bscscan.com/address/0x9f19c8e321bd14345b797d43e01f0eed030f5bff#code

SURGE | Security Analysis

SUMMARY

Launching a token on SURGE comes with a first of its kind advantage: project owners can set the starting price
of their tokens manually and can therefore enable trading without the need of a starting liquidity. This
eliminates the need and the risk of any form of presale. On top, the token can benefit from the already existing
swap and charting system for free. To be compatible, the token has to meet a set of predetermined rules,
which include the buy and sell functions of the $SRG contract, as well as security standards like the everlasting
liquidity pool. After meeting the criteria, any project owner / developer can launch with SURGE without the need
to ask for permission.

| Contract Summary

Documentation Quality

SURGE provides a very poor documentation with standard of solidity base code.

The technical description is provided unclear and disorganized.

Code Quality

The Overall quality of the basecode is poor.

Solidity basecode and rules are unclear and disorganized by SURGE.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-107 | It is recommended to use a reentrancy lock, reentrancy weaknesses detected on lines 535,
538, 539, 541, 544, 722, 723, 540, 661, 662, 662, 661, 665 and 33.
SWC-113 SWC-128 | It is recommended to implement the contract logic to handle failed calls and block
gas limit on lines 723 and 661.
SWC-116 | It is recommended to use oracles for block values as a proxy for time on lines 394, 404, 403
and 503.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 397, 507 and
506.

SURGE | Security Analysis

CONCLUSION

We have audited the SURGE project released on January 2023 to find issues and identify potential security
vulnerabilities in the SURGE project. This process is used to find technical issues and security loopholes that
may be found in smart contracts.

The security audit report yielded unsatisfactory results, discovering medium-risk and low-risk issues.

Writing a contract that does not follow the Solidity style guide can pose a significant risk. The medium and low
problems we found in the smart contract are Multiple calls are executed in the same transaction, This call is
executed following another call within the same transaction. It is possible that the call never gets executed if a
prior call fails permanently. This might be caused intentionally by a malicious callee. If possible, refactor the
code such that each transaction only executes one external call or make sure that all callees can be trusted
(i.e. they're part of your own codebase). Low-risk issue read or write of persistent state following the external
call, control flow decision is made based on The block.timestamp environment variable, and potential use of
"block.number" as a source of randomness. The contract account state is accessed after an external call. To
prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the
contract in an intermediate state.The block.timestamp environment variable is used to determine a control
flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of
earlier blocks. Don't use any of those environment variables as sources of randomness and be aware that use
of these variables introduces a certain level of trust into miners.

We were recommended to keep being aware of investing in this risky smart contract.

SURGE | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

ISSUE
FOUND

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

SURGE | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

ISSUE
FOUND

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations.
ISSUE

FOUND

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

SURGE | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

SURGE | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Jan 12 2023 05:41:37 GMT+0000 (Coordinated Universal Time)

Finished Friday Jan 13 2023 05:42:33 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File SURGE.sol

| Detected Issues

ID Title Severity Status

SWC-113 MULTIPLE CALLS ARE EXECUTED IN THE SAME TRANSACTION. medium acknowledged

SWC-113 MULTIPLE CALLS ARE EXECUTED IN THE SAME TRANSACTION. medium acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 WRITE TO PERSISTENT STATE FOLLOWING EXTERNAL CALL low acknowledged

SWC-107 WRITE TO PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 WRITE TO PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-116
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.

low acknowledged

SWC-116
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.

low acknowledged

SWC-116
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.

low acknowledged

SWC-116
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.NUMBER ENVIRONMENT VARIABLE.

low acknowledged

SURGE | Security Analysis

SWC-113 | MULTIPLE CALLS ARE EXECUTED IN THE SAME
TRANSACTION.
LINE 723

medium SEVERITY
This call is executed following another call within the same transaction. It is possible that the call never gets
executed if a prior call fails permanently. This might be caused intentionally by a malicious callee. If possible,
refactor the code such that each transaction only executes one external call or make sure that all callees can
be trusted (i.e. they're part of your own codebase).

Source File
- SURGE.sol

Locations

722 IPancakePair pair = IPancakePair(stablePairAddress);

723 IERC20 token1 = pair.token0() == stableAddress

724 ? IERC20(pair.token1())

725 : IERC20(pair.token0());

726

727

SURGE | Security Analysis

SWC-113 | MULTIPLE CALLS ARE EXECUTED IN THE SAME
TRANSACTION.
LINE 661

medium SEVERITY
This call is executed following another call within the same transaction. It is possible that the call never gets
executed if a prior call fails permanently. This might be caused intentionally by a malicious callee. If possible,
refactor the code such that each transaction only executes one external call or make sure that all callees can
be trusted (i.e. they're part of your own codebase).

Source File
- SURGE.sol

Locations

660 }("");

661 (bool temp2,) = payable(treasuryWallet).call{

662 value: (taxBalance * treasuryShare) / SHAREDIVISOR

663 }("");

664 assert(temp1 && temp2);

665

SURGE | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 535

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- SURGE.sol

Locations

534 // subtract full amount from sender

535 _balances[seller] = _balances[seller] - tokenAmount;

536

537 //add tax allowance to be withdrawn and remove from liq the amount of beans taken

by the seller

538 taxBalance = isFeeExempt[msg.sender]

539

SURGE | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 538

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- SURGE.sol

Locations

537 //add tax allowance to be withdrawn and remove from liq the amount of beans taken

by the seller

538 taxBalance = isFeeExempt[msg.sender]

539 ? taxBalance

540 : taxBalance + amountTax;

541 liquidity = liquidity - amountBNB;

542

SURGE | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 539

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- SURGE.sol

Locations

538 taxBalance = isFeeExempt[msg.sender]

539 ? taxBalance

540 : taxBalance + amountTax;

541 liquidity = liquidity - amountBNB;

542

543

SURGE | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 541

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- SURGE.sol

Locations

540 : taxBalance + amountTax;

541 liquidity = liquidity - amountBNB;

542

543 // add tokens back into the contract

544 _balances[address(this)] = _balances[address(this)] + tokenAmount;

545

SURGE | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 544

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- SURGE.sol

Locations

543 // add tokens back into the contract

544 _balances[address(this)] = _balances[address(this)] + tokenAmount;

545

546 //update volume

547 uint256 cTime = block.timestamp;

548

SURGE | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 722

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- SURGE.sol

Locations

721 function getBNBPrice() public view returns (uint256) {

722 IPancakePair pair = IPancakePair(stablePairAddress);

723 IERC20 token1 = pair.token0() == stableAddress

724 ? IERC20(pair.token1())

725 : IERC20(pair.token0());

726

SURGE | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 723

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- SURGE.sol

Locations

722 IPancakePair pair = IPancakePair(stablePairAddress);

723 IERC20 token1 = pair.token0() == stableAddress

724 ? IERC20(pair.token1())

725 : IERC20(pair.token0());

726

727

SURGE | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 540

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- SURGE.sol

Locations

539 ? taxBalance

540 : taxBalance + amountTax;

541 liquidity = liquidity - amountBNB;

542

543 // add tokens back into the contract

544

SURGE | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 661

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- SURGE.sol

Locations

660 }("");

661 (bool temp2,) = payable(treasuryWallet).call{

662 value: (taxBalance * treasuryShare) / SHAREDIVISOR

663 }("");

664 assert(temp1 && temp2);

665

SURGE | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 662

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- SURGE.sol

Locations

661 (bool temp2,) = payable(treasuryWallet).call{

662 value: (taxBalance * treasuryShare) / SHAREDIVISOR

663 }("");

664 assert(temp1 && temp2);

665 taxBalance = 0;

666

SURGE | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 662

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- SURGE.sol

Locations

661 (bool temp2,) = payable(treasuryWallet).call{

662 value: (taxBalance * treasuryShare) / SHAREDIVISOR

663 }("");

664 assert(temp1 && temp2);

665 taxBalance = 0;

666

SURGE | Security Analysis

SWC-107 | WRITE TO PERSISTENT STATE FOLLOWING
EXTERNAL CALL
LINE 661

low SEVERITY
The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues,
consider accessing the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy
lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- SURGE.sol

Locations

660 }("");

661 (bool temp2,) = payable(treasuryWallet).call{

662 value: (taxBalance * treasuryShare) / SHAREDIVISOR

663 }("");

664 assert(temp1 && temp2);

665

SURGE | Security Analysis

SWC-107 | WRITE TO PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 665

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- SURGE.sol

Locations

664 assert(temp1 && temp2);

665 taxBalance = 0;

666 }

667

668 function getTokenAmountOut(uint256 amountBNBIn)

669

SURGE | Security Analysis

SWC-107 | WRITE TO PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 33

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- SURGE.sol

Locations

32 _;

33 _status = _NOT_ENTERED;

34 }

35 }

36

37

SURGE | Security Analysis

SWC-116 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.
LINE 394

low SEVERITY
The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- SURGE.sol

Locations

393 // deadline requirement

394 require(deadline >= block.timestamp, "Deadline EXPIRED");

395

396 // Frontrun Guard

397 _lastBuyBlock[msg.sender] = block.number;

398

SURGE | Security Analysis

SWC-116 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.
LINE 404

low SEVERITY
The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- SURGE.sol

Locations

403 require(

404 block.timestamp >= TRADE_OPEN_TIME ||

405 msg.sender == MIGRATION_WALLET,

406 "Trading is not Open"

407);

408

SURGE | Security Analysis

SWC-116 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.
LINE 403

low SEVERITY
The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- SURGE.sol

Locations

402 // check if trading is open or whether the buying wallet is the migration one

403 require(

404 block.timestamp >= TRADE_OPEN_TIME ||

405 msg.sender == MIGRATION_WALLET,

406 "Trading is not Open"

407

SURGE | Security Analysis

SWC-116 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.
LINE 503

low SEVERITY
The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- SURGE.sol

Locations

502 // deadline requirement

503 require(deadline >= block.timestamp, "Deadline EXPIRED");

504

505 //Frontrun Guard

506 require(

507

SURGE | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 397

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- SURGE.sol

Locations

396 // Frontrun Guard

397 _lastBuyBlock[msg.sender] = block.number;

398

399 // liquidity is set

400 require(liquidity > 0, "The token has no liquidity");

401

SURGE | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 507

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- SURGE.sol

Locations

506 require(

507 _lastBuyBlock[msg.sender] != block.number,

508 "Buying and selling in the same block is not allowed!"

509);

510

511

SURGE | Security Analysis

SWC-120 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.NUMBER ENVIRONMENT VARIABLE.
LINE 506

low SEVERITY
The block.number environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- SURGE.sol

Locations

505 //Frontrun Guard

506 require(

507 _lastBuyBlock[msg.sender] != block.number,

508 "Buying and selling in the same block is not allowed!"

509);

510

SURGE | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

SURGE | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

