oty
‘Dph’*
v

Vegasino
Smart Contract
Audit Report

@ SYSFIXED 11 Mar 2022

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

Vegasino | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

Vegasino | Security Analysis

Project name

Token ticker

Blockchain

Vegasino

VEGAS

Binance Smart Chain

| Addresses

Contract address

0xe6884e29ffe5c6f68f4958cf201b0e308f982ac9

Contract deployer address

0xf1€95C214D01419736f1FdF44262DfDE4B296CFD

| Project Website

https://vegasino.io/

| Codebase

https://bscscan.com/address/0xe6884e29ffe5c6f68f4958cf201b0e308f982ac9+#code

https://vegasino.io/
https://bscscan.com/address/0xe6884e29ffe5c6f68f4958cf201b0e308f982ac9#code

@ SYSFIXED Vegasino | Security Analysis

SUMMARY

With over a hundred games available on the Vegasino platform, you can bet on finding something tailored to
your tastes and preferences. Our games are carefully curated and tested for fairness, so you get all the fun and
excitement of being at a world-class casino. Our S$VGS token powers the Vegasino platform developed to
exploit the latest defi innovations. The token contract has been fully audited by CertiK, a leading security-
focused ranking platform to analyze and monitor blockchain protocols and DeFi projects. Our previous Nevada
contract has been ranked in the top 1% of all audits conducted by CertiK. The InterFl Network has also
performed an additional audit for extra peace of mind. The Vegasino liquidity aligns with the industry safety
standards and best practices. The core team consists of experts in their fields with proven field experience.
The team has also passed an external KYC audit to add a layer of safety to the entire project. You can invest in
Vegasino, knowing the platform is backed by a capable team and industry-leading security measures. When
using our platform, you can focus on having fun and playing the game as it should be. We take pride in our goal
and capability to create a secure and fair casino platform for everyone on the Binance Smart Chain. Driven by a
constant need to innovate, you will not find a better home to play games in.

| Contract Summary

Documentation Quality
Vegasino provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

e Standard solidity basecode and rules are already followed by Vegasino with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 594 and 602.

e SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 376, 399, 432, 434, 455, 456, 481, 483, 532, 616, 616, 645, 648, 649, 649, 676, 676 and 679.

e SWC-120 | It is recommended to use external sources of randomness via oracles on lines 659 and 660.

@ SYSFIXED Vegasino | Security Analysis

CONCLUSION

We have audited the Vegasino project released on March 2022 to discover issues and identify potential
security vulnerabilities in Vegasino Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The Vegasino smart contract code issues do not pose a considerable risk. The writing of the contract is close
to the standard of writing contracts in general. The low-risk issues found are arithmetic operation issues, a
floating pragma is set, state variable visibility is not set, and the potential use of "block.number" as a source of
randomness. State variable visibility is not set. It is best practice to set the visibility of state variables explicitly.
The default visibility for "taxRecipient” is internal. Other possible visibility settings are public and private.
Potential use of "block.number" as a source of randomness, the environment variable "block.number" looks like
it might be used as a source of randomness. Note that the values of variables like coinbase, gaslimit, block
number, and timestamp are predictable and can be manipulated by a malicious miner. Also, keep in mind that
attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness; be aware that using these variables introduces a certain level of trust in miners.

£ SYSFIXED

AUDIT RESULT

Vegasino | Security Analysis

Untrusted Callee

addresses.

Article Category Description Result
Functions and state variables visibility should be
- SWC-100 . . - ISSUE
Default Visibility set explicitly. Visibility levels should be specified
SWC-108 . FOUND
consciously.
Integer Overflow SRk T If unchecked math is used, all math operations ISSUE
and Underflow should be safe from overflows and underflows. FOUND
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same
Floating Pragma SWC-103 compiler version and flags that they have been PASS
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 L i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
: SWC-106) PASS
Instruction has funds belonging to users.
Check effect interaction pattern should be followed
Reentrancy SWC-107)) PASS
if the code performs recursive call.
Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a
Assert Violation N PASS
SWC-123 failing assert statement.
Deprecated Solidity o)
. SWC-111 Deprecated built-in functions should never be used. PASS
Functions
Delegate call to Delegatecalls should only be allowed to trusted
SWC-112 PASS

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

Vegasino | Security Analysis

Execution of the code should never be blocked by a
specific contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only
once during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

When inheriting multiple contracts, especially if they have

identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

ISSUE
FOUND

PASS

PASS

PASS

PASS

£ SYSFIXED

Typographical
Error

Override control
character

Unused variables

Unexpected Ether
balance

Hash Collisions
Variable

Hardcoded gas
amount

Unencrypted
Private Data

SWC-129

SWC-130

SWC-131
SWC-135

SWC-132

SWC-133

SWC-134

SWC-136

Vegasino | Security Analysis

A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

Contracts can behave erroneously when they strictly assume
a specific Ether balance.

Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

The transfer() and send() functions forward a fixed amount
of 2300 gas.

It is a common misconception that private type variables
cannot be read.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

@sﬁrmm Vegasino | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Mar 10 2022 14:53:21 GMT+0000 (Coordinated Universal Time)
Finished Friday Mar 11 2022 12:38:09 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File Vegasino.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+="DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+="DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

£ SYSFIXED

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED low | acknowledged
SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED low | acknowledged
SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED low | acknowledged
SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED low | acknowledged
SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET. low | acknowledged
SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET. low | acknowledged
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
SWC-120 low | acknowledged
RANDOMNESS.
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
SWC-120 low | acknowledged
RANDOMNESS.

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 376

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol
Locations
375 address owner = _nsgSender();
376 _approve(owner, spender, _allowances[owner][spender] + addedVal ue);
377 return true,
378 }
379
380

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 399

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol

Locations

398 unchecked {

399 _approve(owner, spender, currentAl |l owance - subtractedVal ue);
400 }

401

402 return true;

403

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 432

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol

Locations

431 unchecked {

432 _bal ances[fron] = fronBal ance - anount;
433 }

434 _bal ances[to] += anobunt;

435

436

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 434

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol

Locations

433 }

434 _bal ances[to] += anount;

435

436 emt Transfer(from to, ampunt);
437

438

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 455

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol
Locations
454
455 _total Supply += anount;
456 _bal ances[account] += anpunt;
457 emt Transfer(address(0), account, anount);
458
459

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 456

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol

Locations

455 _total Supply += anount;

456 _bal ances[account] += anount;

457 emt Transfer(address(0), account, anount);

458

459 _after TokenTransfer (address(0), account, anobunt);

460

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 481

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol

Locations

480 unchecked {

481 _bal ances[account] = accountBal ance - amount;
482 }

483 _total Supply -= anount;

484

485

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 483

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol

Locations

482 }

483 _total Supply -= anount;

484

485 emt Transfer(account, address(0), anount);
486

487

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 532

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol

Locations

531 unchecked {

532 _approve(owner, spender, currentAl|lowance - anount);
533 }
534 }
535 }

536

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 616

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol
Locations
615 isWhitelisted[recipient] = true;
616 _mnt(recipient, 5 000_000_000 * 10**18);
617 }
618
619 // Override
620

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 616

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol
Locations
615 isWhitelisted[recipient] = true;
616 _mnt(recipient, 5 000_000_000 * 10**18);
617 }
618
619 // Override
620

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED

LINE 645

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol

Locations

644 function getDynani cSel | Tax() public view returns (uint256) ({
645 ui nt 256 endi ngTi ne = | aunchTi me + 10 days;

646

647 if (endingTime > block.tinestanp) {

648 ui nt 256 renai ni ngTi re = endi ngTi me - bl ock. ti nestanp;

649

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 648

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol

Locations

647 i f (endingTime > block.tinestanp) {

648 ui nt 256 remai ni ngTi re = endi ngTi me - bl ock. ti nestanp;
649 return 3000 * renainingTine / 10 days;

650 } else {

651 return O;

652

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 649

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol

Locations

648 ui nt 256 remai ni ngTi mre = endi ngTi me - bl ock. tinestanp;
649 return 3000 * renainingTine / 10 days;

650 } else {

651 return O;

652 }

653

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 649

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol

Locations

648 ui nt 256 remai ni ngTi mre = endi ngTi me - bl ock. tinestanp;
649 return 3000 * renainingTine / 10 days;

650 } else {

651 return O;

652 }

653

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 676

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol

Locations

675

676 ui nt 256 taxAmount = ampbunt * _get Tot al Tax(recipi ent) / TAX DENOM NATOR;
677 if (taxAmount > 0) { super. transfer(sender, taxRecipient, taxAnount); }
678

679 return amount - taxAnmount;

680

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 676

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol

Locations

675

676 ui nt 256 taxAmount = ampbunt * _get Tot al Tax(recipi ent) / TAX DENOM NATOR;
677 if (taxAmount > 0) { super. transfer(sender, taxRecipient, taxAnount); }
678

679 return amount - taxAnmount;

680

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 679

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Vegasino.sol
Locations
678
679 return anount - taxAnpunt;
680 }
681

682 function _getTotal Tax(address recipient) private view returns (uint256) {
683

@S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 594

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "taxRecipient" is
internal. Other possible visibility settings are public and private.

Source File
- Vegasino.sol

Locations

593 ui nt 256 constant TAX _DENOM NATOR = 10000;

594 address i mut abl e taxReci pi ent;

595 ui nt 256 public |aunchTi ne;

596 bool public tradi ngEnabl ed;

597 bool public frontRunProtectionEnabled = true;
598

@S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 602

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "previousBuyBlock" is
internal. Other possible visibility settings are public and private.

Source File
- Vegasino.sol

Locations

601 mappi ng (address => bool) public isBot;

602 nmappi ng (address => ui nt256) previousBuyBl ock;
603

604 event Enabl eTradi ng();

605 event Di sabl eFront RunProt ection();

606

@‘S\FSHREU Vegasino | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE

OF RANDOMNESS.
LINE 659

low SEVERITY

The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Vegasino.sol

Locations

658 i f (isMarket Maker[sender]) {
659 previ ousBuyBIl ock[reci pi ent] = bl ock. nunber;

660 } else if (isMarketMaker[recipient] && previ ousBuyBl ock[sender] == bl ock. nunber) ({
661 i sBot[sender] = true;
662 }

663

@S‘I"‘SH}I{ED Vegasino | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE

OF RANDOMNESS.
LINE 660

low SEVERITY

The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Vegasino.sol

Locations

659 previ ousBuyBIl ock[reci pi ent] = bl ock. nunber;

660 } else if (isMarketMaker[recipient] && previousBuyBl ock[sender] == bl ock. nunber) {
661 i sBot[sender] = true;

662 }

663

664

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@‘S‘I"‘SH}I{ED Vegasino | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

