
Vegasino

Smart Contract
Audit Report

11 Mar 2022



Vegasino | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us



Vegasino | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Vegasino VEGAS Binance Smart Chain

| Addresses

Contract address 0xe6884e29ffe5c6f68f4958cf201b0e308f982ac9

Contract deployer address 0xf1e95C214D01419736f1FdF44262DfDE4B296CFD

| Project Website

https://vegasino.io/ 

| Codebase

https://bscscan.com/address/0xe6884e29ffe5c6f68f4958cf201b0e308f982ac9#code 

https://vegasino.io/
https://bscscan.com/address/0xe6884e29ffe5c6f68f4958cf201b0e308f982ac9#code


Vegasino | Security Analysis

SUMMARY

With over a hundred games available on the Vegasino platform, you can bet on finding something tailored to
your tastes and preferences. Our games are carefully curated and tested for fairness, so you get all the fun and
excitement of being at a world-class casino. Our $VGS token powers the Vegasino platform developed to
exploit the latest defi innovations. The token contract has been fully audited by CertiK, a leading security-
focused ranking platform to analyze and monitor blockchain protocols and DeFi projects. Our previous Nevada
contract has been ranked in the top 1% of all audits conducted by CertiK. The InterFI Network has also
performed an additional audit for extra peace of mind. The Vegasino liquidity aligns with the industry safety
standards and best practices. The core team consists of experts in their fields with proven field experience.
The team has also passed an external KYC audit to add a layer of safety to the entire project. You can invest in
Vegasino, knowing the platform is backed by a capable team and industry-leading security measures. When
using our platform, you can focus on having fun and playing the game as it should be. We take pride in our goal
and capability to create a secure and fair casino platform for everyone on the Binance Smart Chain. Driven by a
constant need to innovate, you will not find a better home to play games in.

| Contract Summary

Documentation Quality

Vegasino provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Vegasino with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% ( Through Codebase )

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 594 and 602.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 376, 399, 432, 434, 455, 456, 481, 483, 532, 616, 616, 645, 648, 649, 649, 676, 676 and 679.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 659 and 660.



Vegasino | Security Analysis

CONCLUSION

We have audited the Vegasino project released on March 2022 to discover issues and identify potential
security vulnerabilities in Vegasino Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The Vegasino smart contract code issues do not pose a considerable risk. The writing of the contract is close
to the standard of writing contracts in general. The low-risk issues found are arithmetic operation issues, a
floating pragma is set, state variable visibility is not set, and the potential use of "block.number" as a source of
randomness. State variable visibility is not set. It is best practice to set the visibility of state variables explicitly.
The default visibility for "taxRecipient" is internal. Other possible visibility settings are public and private.
Potential use of "block.number" as a source of randomness, the environment variable "block.number" looks like
it might be used as a source of randomness. Note that the values of variables like coinbase, gaslimit, block
number, and timestamp are predictable and can be manipulated by a malicious miner. Also, keep in mind that
attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness; be aware that using these variables introduces a certain level of trust in miners.



Vegasino | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS



Vegasino | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS



Vegasino | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS



Vegasino | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Mar 10 2022 14:53:21 GMT+0000 (Coordinated Universal Time)

Finished Friday Mar 11 2022 12:38:09 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Vegasino.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged



SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 376

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

375   address owner = _msgSender();

376   _approve(owner, spender, _allowances[owner][spender] + addedValue);

377   return true;

378   }

379   

380   



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 399

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

398   unchecked {

399   _approve(owner, spender, currentAllowance - subtractedValue);

400   }

401   

402   return true;

403   



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 432

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

431   unchecked {

432   _balances[from] = fromBalance - amount;

433   }

434   _balances[to] += amount;

435   

436   



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 434

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

433   }

434   _balances[to] += amount;

435   

436   emit Transfer(from, to, amount);

437   

438   



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 455

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

454   

455   _totalSupply += amount;

456   _balances[account] += amount;

457   emit Transfer(address(0), account, amount);

458   

459   



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 456

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

455   _totalSupply += amount;

456   _balances[account] += amount;

457   emit Transfer(address(0), account, amount);

458   

459   _afterTokenTransfer(address(0), account, amount);

460   



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 481

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

480   unchecked {

481   _balances[account] = accountBalance - amount;

482   }

483   _totalSupply -= amount;

484   

485   



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 483

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

482   }

483   _totalSupply -= amount;

484   

485   emit Transfer(account, address(0), amount);

486   

487   



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 532

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

531   unchecked {

532   _approve(owner, spender, currentAllowance - amount);

533   }

534   }

535   }

536   



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 616

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

615   isWhitelisted[recipient] = true;

616   _mint(recipient, 5_000_000_000 * 10**18);

617   }

618   

619   // Override

620   



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 616

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

615   isWhitelisted[recipient] = true;

616   _mint(recipient, 5_000_000_000 * 10**18);

617   }

618   

619   // Override

620   



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 645

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

644   function getDynamicSellTax() public view returns (uint256) {

645   uint256 endingTime = launchTime + 10 days;

646   

647   if (endingTime > block.timestamp) {

648   uint256 remainingTime = endingTime - block.timestamp;

649   



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 648

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

647   if (endingTime > block.timestamp) {

648   uint256 remainingTime = endingTime - block.timestamp;

649   return 3000 * remainingTime / 10 days;

650   } else {

651   return 0;

652   



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 649

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

648   uint256 remainingTime = endingTime - block.timestamp;

649   return 3000 * remainingTime / 10 days;

650   } else {

651   return 0;

652   }

653   



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 649

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

648   uint256 remainingTime = endingTime - block.timestamp;

649   return 3000 * remainingTime / 10 days;

650   } else {

651   return 0;

652   }

653   



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 676

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

675   

676   uint256 taxAmount = amount * _getTotalTax(recipient) / TAX_DENOMINATOR;

677   if (taxAmount > 0) { super._transfer(sender, taxRecipient, taxAmount); }

678   

679   return amount - taxAmount;

680   



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 676

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

675   

676   uint256 taxAmount = amount * _getTotalTax(recipient) / TAX_DENOMINATOR;

677   if (taxAmount > 0) { super._transfer(sender, taxRecipient, taxAmount); }

678   

679   return amount - taxAmount;

680   



Vegasino | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 679

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- Vegasino.sol 

Locations

678   

679   return amount - taxAmount;

680   }

681   

682   function _getTotalTax(address recipient) private view returns (uint256) {

683   



Vegasino | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 594

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "taxRecipient" is
internal. Other possible visibility settings are public and private. 

Source File
- Vegasino.sol 

Locations

593   uint256 constant TAX_DENOMINATOR = 10000;

594   address immutable taxRecipient;

595   uint256 public launchTime;

596   bool public tradingEnabled;

597   bool public frontRunProtectionEnabled = true;

598   



Vegasino | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 602

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "previousBuyBlock" is
internal. Other possible visibility settings are public and private. 

Source File
- Vegasino.sol 

Locations

601   mapping (address => bool) public isBot;

602   mapping (address => uint256) previousBuyBlock;

603   

604   event EnableTrading();

605   event DisableFrontRunProtection();

606   



Vegasino | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 659

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners. 

Source File
- Vegasino.sol 

Locations

658   if (isMarketMaker[sender]) {

659   previousBuyBlock[recipient] = block.number;

660   } else if (isMarketMaker[recipient] && previousBuyBlock[sender] == block.number) {

661   isBot[sender] = true;

662   }

663   



Vegasino | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 660

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners. 

Source File
- Vegasino.sol 

Locations

659   previousBuyBlock[recipient] = block.number;

660   } else if (isMarketMaker[recipient] && previousBuyBlock[sender] == block.number) {

661   isBot[sender] = true;

662   }

663   

664   



Vegasino | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.



Vegasino | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.


