
JK COIN

Smart Contract
Audit Report

14 Sep 2021

JK COIN | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

JK COIN | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

JK COIN JK Binance Smart Chain

| Addresses

Contract address 0x1ec58fe5e681e35e490b5d4cbecdf42b29c1b063

Contract deployer address 0x46214af5dD24511ed9943CeF6691536B78cB3bdd

| Project Website

https://www.jakaverse.com/

| Codebase

https://bscscan.com/address/0x1ec58fe5e681e35e490b5d4cbecdf42b29c1b063#code

https://www.jakaverse.com/
https://bscscan.com/address/0x1ec58fe5e681e35e490b5d4cbecdf42b29c1b063#code

JK COIN | Security Analysis

SUMMARY

AKAVERSE reinforces its leadership in Metaverse (virtual world) platform, ending Pre Series A funding deal
from giant alliance Titan Capital Group Holdings, a leader in supporting and investing in innovative technology
and startups both nationally and region with an initial funding of more than 3 million USD. to strengthen the
business.

| Contract Summary

Documentation Quality

JK COIN provides a very poor documentation with standard of solidity base code.

The technical description is provided unclear and disorganized.

Code Quality

The Overall quality of the basecode is poor.

Solidity basecode and rules are unclear and disorganized by JK COIN.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 70, 71, 100, 111, 123, 124,
125, 148, 165, 183, 203, 223, 258, 269, 307, 316, 332, 336, 358, 368, 394, 83, 139, 350, 353 and 356.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 9.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 384, 243, 387, 165, 244, 336, 389, 316, 258, 285, 111, 269, 307, 196,
388, 332, 394, 183, 223 and 397.
SWC-111 | It is recommended to use alternatives to the deprecated constructions on lines 40, 44, 48, 52,
70, 111, 123, 183, 58, 90, 171, 213, 248, 292, 300 and 149.
SWC-119 | Review storage variable layouts on lines 244.

JK COIN | Security Analysis

CONCLUSION

We have audited the JK COIN project released on September 2021 to find issues and identify potential security
vulnerabilities in the JK COIN project. This process is used to find technical issues and security loopholes that
may be found in smart contracts.

The security audit report yielded unsatisfactory results, discovering medium-risk and low-risk issues.

Writing a contract that does not follow the Solidity style guide can pose a significant risk. The serious and low
problems we found in the smart contract are incorrect ERC20 implementation. The function could be marked
as an external, built-in symbol "assert" shadowing, and an assertion violation was triggered. Function visibility
is not set (prior to Solidity 0.5.0), and the function definition of "transfer" lacks a visibility specifier. Note that
the compiler assumes "public" visibility by default. Function visibility should always be specified explicitly to
assure the correctness of the code and improve readability.Function could be marked as external, function
definition of "balanceOf" is marked "public." However, another function never directly calls it in the same
contract or any of its descendants. Consider marking it as "external" instead. If an assertion violation was
triggered, it is possible to trigger an assertion violation. Solidity asserts () statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (via passed arguments) and callees (for
instance, via return values).

We were recommended to keep being aware of investing in this risky smart contract.

JK COIN | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used.
ISSUE

FOUND

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

JK COIN | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed.
ISSUE

FOUND

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

JK COIN | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

JK COIN | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Sep 13 2021 14:11:17 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Sep 14 2021 22:09:54 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File JK.sol

| Detected Issues

ID Title Severity Status

SWC-000 INCORRECT ERC20 IMPLEMENTATION medium acknowledged

SWC-000 INCORRECT ERC20 IMPLEMENTATION medium acknowledged

SWC-000 INCORRECT ERC20 IMPLEMENTATION medium acknowledged

SWC-000 INCORRECT ERC20 IMPLEMENTATION medium acknowledged

SWC-000 INCORRECT ERC20 IMPLEMENTATION medium acknowledged

SWC-000 INCORRECT ERC20 IMPLEMENTATION medium acknowledged

SWC-000 INCORRECT ERC20 IMPLEMENTATION medium acknowledged

SWC-000 FUNCTION COULD BE MARKED AS EXTERNAL. medium acknowledged

SWC-000 FUNCTION COULD BE MARKED AS EXTERNAL. medium acknowledged

SWC-000 FUNCTION COULD BE MARKED AS EXTERNAL. medium acknowledged

SWC-000 FUNCTION COULD BE MARKED AS EXTERNAL. medium acknowledged

SWC-000 FUNCTION COULD BE MARKED AS EXTERNAL. medium acknowledged

SWC-000 FUNCTION COULD BE MARKED AS EXTERNAL. medium acknowledged

SWC-000 INCORRECT ERC20 IMPLEMENTATION medium acknowledged

SWC-000 FUNCTION COULD BE MARKED AS EXTERNAL. medium acknowledged

SWC-000 FUNCTION COULD BE MARKED AS EXTERNAL. medium acknowledged

SWC-000 FUNCTION COULD BE MARKED AS EXTERNAL. medium acknowledged

SWC-000 FUNCTION COULD BE MARKED AS EXTERNAL. medium acknowledged

SWC-000 FUNCTION COULD BE MARKED AS EXTERNAL. medium acknowledged

SWC-000 INCORRECT ERC20 IMPLEMENTATION medium acknowledged

SWC-000 INCORRECT ERC20 IMPLEMENTATION medium acknowledged

SWC-000 FUNCTION COULD BE MARKED AS EXTERNAL. medium acknowledged

SWC-000 FUNCTION COULD BE MARKED AS EXTERNAL. medium acknowledged

SWC-000 BUILTIN SYMBOL "ASSERT" SHADOWING medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-100 FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "THROW" KEYWORD IS DEPRECATED. low acknowledged

SWC-111 USE OF THE "VAR" KEYWORD IS DEPRECATED. low acknowledged

SWC-119 STATE VARIABLE SHADOWS ANOTHER STATE VARIABLE. low acknowledged

JK COIN | Security Analysis

SWC-000 | INCORRECT ERC20 IMPLEMENTATION
LINE 100

medium SEVERITY
Contract "BasicToken" looks like its trying to implement the ERC20 standard, but its missing a required
externally accessible function with signature "function transfer(address, uint256) returns (bool)". A similar
"transfer" function is defined in contract "BasicToken", but its signature deviates from the standard.

Source File
- JK.sol

Locations

99 */

100 function transfer(address _to, uint _value) onlyPayloadSize(2 * 32) {

101 balances[msg.sender] = balances[msg.sender].sub(_value);

102 balances[_to] = balances[_to].add(_value);

103 Transfer(msg.sender, _to, _value);

104

JK COIN | Security Analysis

SWC-000 | INCORRECT ERC20 IMPLEMENTATION
LINE 80

medium SEVERITY
Contract "BasicToken" looks like its trying to implement the ERC20 standard, but its missing a required event
with signature "event Approval(address indexed, address indexed, uint256)"

Source File
- JK.sol

Locations

79 */

80 contract BasicToken is ERC20Basic {

81 using SafeMath for uint;

82

83 mapping(address => uint) balances;

84

JK COIN | Security Analysis

SWC-000 | INCORRECT ERC20 IMPLEMENTATION
LINE 137

medium SEVERITY
Contract "StandardToken" looks like its trying to implement the ERC20 standard, but its missing a required
externally accessible function with signature "function transfer(address, uint256) returns (bool)". A similar
"transfer" function is defined in contract "BasicToken", but its signature deviates from the standard.

Source File
- JK.sol

Locations

136 */

137 contract StandardToken is BasicToken, ERC20 {

138

139 mapping (address => mapping (address => uint)) allowed;

140

141

JK COIN | Security Analysis

SWC-000 | INCORRECT ERC20 IMPLEMENTATION
LINE 148

medium SEVERITY
Contract "StandardToken" looks like its trying to implement the ERC20 standard, but its missing a required
externally accessible function with signature "function transferFrom(address, address, uint256) returns (bool)".
A similar "transferFrom" function is defined in contract "StandardToken", but its signature deviates from the
standard.

Source File
- JK.sol

Locations

147 */

148 function transferFrom(address _from, address _to, uint _value) onlyPayloadSize(3 *

32) {

149 var _allowance = allowed[_from][msg.sender];

150

151 // Check is not needed because sub(_allowance, _value) will already throw if this

condition is not met

152

JK COIN | Security Analysis

SWC-000 | INCORRECT ERC20 IMPLEMENTATION
LINE 239

medium SEVERITY
Contract "MintableToken" looks like its trying to implement the ERC20 standard, but its missing a required
externally accessible function with signature "function transfer(address, uint256) returns (bool)". A similar
"transfer" function is defined in contract "BasicToken", but its signature deviates from the standard.

Source File
- JK.sol

Locations

238

239 contract MintableToken is StandardToken, Ownable {

240 event Mint(address indexed to, uint value);

241 event MintFinished();

242

243

JK COIN | Security Analysis

SWC-000 | INCORRECT ERC20 IMPLEMENTATION
LINE 330

medium SEVERITY
Contract "PausableToken" looks like its trying to implement the ERC20 standard, but its missing a required
externally accessible function with signature "function approve(address, uint256) returns (bool)". A similar
"approve" function is defined in contract "StandardToken", but its signature deviates from the standard.

Source File
- JK.sol

Locations

329

330 contract PausableToken is StandardToken, Pausable {

331

332 function transfer(address _to, uint _value) whenNotPaused {

333 super.transfer(_to, _value);

334

JK COIN | Security Analysis

SWC-000 | INCORRECT ERC20 IMPLEMENTATION
LINE 384

medium SEVERITY
Contract "JK" looks like its trying to implement the ERC20 standard, but its missing a required externally
accessible function with signature "function transfer(address, uint256) returns (bool)". A similar "transfer"
function is defined in contract "PausableToken", but its signature deviates from the standard.

Source File
- JK.sol

Locations

383 */

384 contract JK is PausableToken, MintableToken {

385 using SafeMath for uint256;

386

387 string public name = "JK COIN";

388

JK COIN | Security Analysis

SWC-000 | FUNCTION COULD BE MARKED AS EXTERNAL.
LINE 70

medium SEVERITY
The function definition of "balanceOf" is marked "public". However, it is never directly called by another
function in the same contract or in any of its descendants. Consider to mark it as "external" instead.

Source File
- JK.sol

Locations

69 uint public totalSupply;

70 function balanceOf(address who) constant returns (uint);

71 function transfer(address to, uint value);

72 event Transfer(address indexed from, address indexed to, uint value);

73 }

74

JK COIN | Security Analysis

SWC-000 | FUNCTION COULD BE MARKED AS EXTERNAL.
LINE 71

medium SEVERITY
The function definition of "transfer" is marked "public". However, it is never directly called by another function
in the same contract or in any of its descendants. Consider to mark it as "external" instead.

Source File
- JK.sol

Locations

70 function balanceOf(address who) constant returns (uint);

71 function transfer(address to, uint value);

72 event Transfer(address indexed from, address indexed to, uint value);

73 }

74

75

JK COIN | Security Analysis

SWC-000 | FUNCTION COULD BE MARKED AS EXTERNAL.
LINE 111

medium SEVERITY
The function definition of "balanceOf" is marked "public". However, it is never directly called by another
function in the same contract or in any of its descendants. Consider to mark it as "external" instead.

Source File
- JK.sol

Locations

110 */

111 function balanceOf(address _owner) constant returns (uint balance) {

112 return balances[_owner];

113 }

114

115

JK COIN | Security Analysis

SWC-000 | FUNCTION COULD BE MARKED AS EXTERNAL.
LINE 123

medium SEVERITY
The function definition of "allowance" is marked "public". However, it is never directly called by another function
in the same contract or in any of its descendants. Consider to mark it as "external" instead.

Source File
- JK.sol

Locations

122 contract ERC20 is ERC20Basic {

123 function allowance(address owner, address spender) constant returns (uint);

124 function transferFrom(address from, address to, uint value);

125 function approve(address spender, uint value);

126 event Approval(address indexed owner, address indexed spender, uint value);

127

JK COIN | Security Analysis

SWC-000 | FUNCTION COULD BE MARKED AS EXTERNAL.
LINE 124

medium SEVERITY
The function definition of "transferFrom" is marked "public". However, it is never directly called by another
function in the same contract or in any of its descendants. Consider to mark it as "external" instead.

Source File
- JK.sol

Locations

123 function allowance(address owner, address spender) constant returns (uint);

124 function transferFrom(address from, address to, uint value);

125 function approve(address spender, uint value);

126 event Approval(address indexed owner, address indexed spender, uint value);

127 }

128

JK COIN | Security Analysis

SWC-000 | FUNCTION COULD BE MARKED AS EXTERNAL.
LINE 125

medium SEVERITY
The function definition of "approve" is marked "public". However, it is never directly called by another function
in the same contract or in any of its descendants. Consider to mark it as "external" instead.

Source File
- JK.sol

Locations

124 function transferFrom(address from, address to, uint value);

125 function approve(address spender, uint value);

126 event Approval(address indexed owner, address indexed spender, uint value);

127 }

128

129

JK COIN | Security Analysis

SWC-000 | INCORRECT ERC20 IMPLEMENTATION
LINE 165

medium SEVERITY
Contract "StandardToken" looks like its trying to implement the ERC20 standard, but its missing a required
externally accessible function with signature "function approve(address, uint256) returns (bool)". A similar
"approve" function is defined in contract "StandardToken", but its signature deviates from the standard.

Source File
- JK.sol

Locations

164 */

165 function approve(address _spender, uint _value) {

166

167 // To change the approve amount you first have to reduce the addresses`

168 // allowance to zero by calling `approve(_spender, 0)` if it is not

169

JK COIN | Security Analysis

SWC-000 | FUNCTION COULD BE MARKED AS EXTERNAL.
LINE 183

medium SEVERITY
The function definition of "allowance" is marked "public". However, it is never directly called by another function
in the same contract or in any of its descendants. Consider to mark it as "external" instead.

Source File
- JK.sol

Locations

182 */

183 function allowance(address _owner, address _spender) constant returns (uint

remaining) {

184 return allowed[_owner][_spender];

185 }

186

187

JK COIN | Security Analysis

SWC-000 | FUNCTION COULD BE MARKED AS EXTERNAL.
LINE 223

medium SEVERITY
The function definition of "transferOwnership" is marked "public". However, it is never directly called by another
function in the same contract or in any of its descendants. Consider to mark it as "external" instead.

Source File
- JK.sol

Locations

222 */

223 function transferOwnership(address newOwner) onlyOwner {

224 if (newOwner != address(0)) {

225 owner = newOwner;

226 }

227

JK COIN | Security Analysis

SWC-000 | FUNCTION COULD BE MARKED AS EXTERNAL.
LINE 269

medium SEVERITY
The function definition of "finishMinting" is marked "public". However, it is never directly called by another
function in the same contract or in any of its descendants. Consider to mark it as "external" instead.

Source File
- JK.sol

Locations

268 */

269 function finishMinting() onlyOwner returns (bool) {

270 mintingFinished = true;

271 MintFinished();

272 return true;

273

JK COIN | Security Analysis

SWC-000 | FUNCTION COULD BE MARKED AS EXTERNAL.
LINE 307

medium SEVERITY
The function definition of "pause" is marked "public". However, it is never directly called by another function in
the same contract or in any of its descendants. Consider to mark it as "external" instead.

Source File
- JK.sol

Locations

306 */

307 function pause() onlyOwner whenNotPaused returns (bool) {

308 paused = true;

309 Pause();

310 return true;

311

JK COIN | Security Analysis

SWC-000 | FUNCTION COULD BE MARKED AS EXTERNAL.
LINE 316

medium SEVERITY
The function definition of "unpause" is marked "public". However, it is never directly called by another function
in the same contract or in any of its descendants. Consider to mark it as "external" instead.

Source File
- JK.sol

Locations

315 */

316 function unpause() onlyOwner whenPaused returns (bool) {

317 paused = false;

318 Unpause();

319 return true;

320

JK COIN | Security Analysis

SWC-000 | INCORRECT ERC20 IMPLEMENTATION
LINE 332

medium SEVERITY
Contract "PausableToken" looks like its trying to implement the ERC20 standard, but its missing a required
externally accessible function with signature "function transfer(address, uint256) returns (bool)". A similar
"transfer" function is defined in contract "PausableToken", but its signature deviates from the standard.

Source File
- JK.sol

Locations

331

332 function transfer(address _to, uint _value) whenNotPaused {

333 super.transfer(_to, _value);

334 }

335

336

JK COIN | Security Analysis

SWC-000 | INCORRECT ERC20 IMPLEMENTATION
LINE 336

medium SEVERITY
Contract "PausableToken" looks like its trying to implement the ERC20 standard, but its missing a required
externally accessible function with signature "function transferFrom(address, address, uint256) returns (bool)".
A similar "transferFrom" function is defined in contract "PausableToken", but its signature deviates from the
standard.

Source File
- JK.sol

Locations

335

336 function transferFrom(address _from, address _to, uint _value) whenNotPaused {

337 super.transferFrom(_from, _to, _value);

338 }

339 }

340

JK COIN | Security Analysis

SWC-000 | FUNCTION COULD BE MARKED AS EXTERNAL.
LINE 368

medium SEVERITY
The function definition of "claim" is marked "public". However, it is never directly called by another function in
the same contract or in any of its descendants. Consider to mark it as "external" instead.

Source File
- JK.sol

Locations

367 */

368 function claim() {

369 require(msg.sender == beneficiary);

370 require(now >= releaseTime);

371

372

JK COIN | Security Analysis

SWC-000 | FUNCTION COULD BE MARKED AS EXTERNAL.
LINE 394

medium SEVERITY
The function definition of "mintTimelocked" is marked "public". However, it is never directly called by another
function in the same contract or in any of its descendants. Consider to mark it as "external" instead.

Source File
- JK.sol

Locations

393 */

394 function mintTimelocked(address _to, uint256 _amount, uint256 _releaseTime)

395 onlyOwner canMint returns (TokenTimelock) {

396

397 TokenTimelock timelock = new TokenTimelock(this, _to, _releaseTime);

398

JK COIN | Security Analysis

SWC-000 | BUILTIN SYMBOL "ASSERT" SHADOWING
LINE 56

medium SEVERITY
Definition "assert" uses the same name as a built-in symbol. Reserved names should not be used to avoid
confusion.

Source File
- JK.sol

Locations

55

56 function assert(bool assertion) internal {

57 if (!assertion) {

58 throw;

59 }

60

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 384

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

383 */

384 contract JK is PausableToken, MintableToken {

385 using SafeMath for uint256;

386

387 string public name = "JK COIN";

388

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 243

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

242

243 bool public mintingFinished = false;

244 uint public totalSupply = 0;

245

246

247

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 387

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

386

387 string public name = "JK COIN";

388 string public symbol = "JK";

389 uint public decimals = 18;

390

391

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 165

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

164 */

165 function approve(address _spender, uint _value) {

166

167 // To change the approve amount you first have to reduce the addresses`

168 // allowance to zero by calling `approve(_spender, 0)` if it is not

169

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 244

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

243 bool public mintingFinished = false;

244 uint public totalSupply = 0;

245

246

247 modifier canMint() {

248

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 336

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

335

336 function transferFrom(address _from, address _to, uint _value) whenNotPaused {

337 super.transferFrom(_from, _to, _value);

338 }

339 }

340

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 389

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

388 string public symbol = "JK";

389 uint public decimals = 18;

390

391 /**

392 * @dev mint timelocked tokens

393

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 316

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

315 */

316 function unpause() onlyOwner whenPaused returns (bool) {

317 paused = false;

318 Unpause();

319 return true;

320

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 258

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

257 */

258 function mint(address _to, uint _amount) onlyOwner canMint returns (bool) {

259 totalSupply = totalSupply.add(_amount);

260 balances[_to] = balances[_to].add(_amount);

261 Mint(_to, _amount);

262

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 285

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

284

285 bool public paused = false;

286

287

288 /**

289

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 111

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

110 */

111 function balanceOf(address _owner) constant returns (uint balance) {

112 return balances[_owner];

113 }

114

115

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 269

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

268 */

269 function finishMinting() onlyOwner returns (bool) {

270 mintingFinished = true;

271 MintFinished();

272 return true;

273

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 307

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

306 */

307 function pause() onlyOwner whenNotPaused returns (bool) {

308 paused = true;

309 Pause();

310 return true;

311

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 196

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

195 contract Ownable {

196 address public owner;

197

198

199 /**

200

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 388

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

387 string public name = "JK COIN";

388 string public symbol = "JK";

389 uint public decimals = 18;

390

391 /**

392

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 332

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

331

332 function transfer(address _to, uint _value) whenNotPaused {

333 super.transfer(_to, _value);

334 }

335

336

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 394

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

393 */

394 function mintTimelocked(address _to, uint256 _amount, uint256 _releaseTime)

395 onlyOwner canMint returns (TokenTimelock) {

396

397 TokenTimelock timelock = new TokenTimelock(this, _to, _releaseTime);

398

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 183

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

182 */

183 function allowance(address _owner, address _spender) constant returns (uint

remaining) {

184 return allowed[_owner][_spender];

185 }

186

187

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 223

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

222 */

223 function transferOwnership(address newOwner) onlyOwner {

224 if (newOwner != address(0)) {

225 owner = newOwner;

226 }

227

JK COIN | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 397

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- JK.sol

Locations

396

397 TokenTimelock timelock = new TokenTimelock(this, _to, _releaseTime);

398 mint(timelock, _amount);

399

400 return timelock;

401

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 70

low SEVERITY
The function definition of "balanceOf" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- JK.sol

Locations

69 uint public totalSupply;

70 function balanceOf(address who) constant returns (uint);

71 function transfer(address to, uint value);

72 event Transfer(address indexed from, address indexed to, uint value);

73 }

74

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 71

low SEVERITY
The function definition of "transfer" lacks a visibility specifier. Note that the compiler assumes "public" visibility
by default. Function visibility should always be specified explicitly to assure correctness of the code and
improve readability.

Source File
- JK.sol

Locations

70 function balanceOf(address who) constant returns (uint);

71 function transfer(address to, uint value);

72 event Transfer(address indexed from, address indexed to, uint value);

73 }

74

75

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 100

low SEVERITY
The function definition of "transfer" lacks a visibility specifier. Note that the compiler assumes "public" visibility
by default. Function visibility should always be specified explicitly to assure correctness of the code and
improve readability.

Source File
- JK.sol

Locations

99 */

100 function transfer(address _to, uint _value) onlyPayloadSize(2 * 32) {

101 balances[msg.sender] = balances[msg.sender].sub(_value);

102 balances[_to] = balances[_to].add(_value);

103 Transfer(msg.sender, _to, _value);

104

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 111

low SEVERITY
The function definition of "balanceOf" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- JK.sol

Locations

110 */

111 function balanceOf(address _owner) constant returns (uint balance) {

112 return balances[_owner];

113 }

114

115

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 123

low SEVERITY
The function definition of "allowance" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- JK.sol

Locations

122 contract ERC20 is ERC20Basic {

123 function allowance(address owner, address spender) constant returns (uint);

124 function transferFrom(address from, address to, uint value);

125 function approve(address spender, uint value);

126 event Approval(address indexed owner, address indexed spender, uint value);

127

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 124

low SEVERITY
The function definition of "transferFrom" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- JK.sol

Locations

123 function allowance(address owner, address spender) constant returns (uint);

124 function transferFrom(address from, address to, uint value);

125 function approve(address spender, uint value);

126 event Approval(address indexed owner, address indexed spender, uint value);

127 }

128

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 125

low SEVERITY
The function definition of "approve" lacks a visibility specifier. Note that the compiler assumes "public" visibility
by default. Function visibility should always be specified explicitly to assure correctness of the code and
improve readability.

Source File
- JK.sol

Locations

124 function transferFrom(address from, address to, uint value);

125 function approve(address spender, uint value);

126 event Approval(address indexed owner, address indexed spender, uint value);

127 }

128

129

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 148

low SEVERITY
The function definition of "transferFrom" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- JK.sol

Locations

147 */

148 function transferFrom(address _from, address _to, uint _value) onlyPayloadSize(3 *

32) {

149 var _allowance = allowed[_from][msg.sender];

150

151 // Check is not needed because sub(_allowance, _value) will already throw if this

condition is not met

152

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 165

low SEVERITY
The function definition of "approve" lacks a visibility specifier. Note that the compiler assumes "public" visibility
by default. Function visibility should always be specified explicitly to assure correctness of the code and
improve readability.

Source File
- JK.sol

Locations

164 */

165 function approve(address _spender, uint _value) {

166

167 // To change the approve amount you first have to reduce the addresses`

168 // allowance to zero by calling `approve(_spender, 0)` if it is not

169

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 183

low SEVERITY
The function definition of "allowance" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- JK.sol

Locations

182 */

183 function allowance(address _owner, address _spender) constant returns (uint

remaining) {

184 return allowed[_owner][_spender];

185 }

186

187

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 203

low SEVERITY
The function definition of "Ownable" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- JK.sol

Locations

202 */

203 function Ownable() {

204 owner = msg.sender;

205 }

206

207

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 223

low SEVERITY
The function definition of "transferOwnership" lacks a visibility specifier. Note that the compiler assumes
"public" visibility by default. Function visibility should always be specified explicitly to assure correctness of the
code and improve readability.

Source File
- JK.sol

Locations

222 */

223 function transferOwnership(address newOwner) onlyOwner {

224 if (newOwner != address(0)) {

225 owner = newOwner;

226 }

227

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 258

low SEVERITY
The function definition of "mint" lacks a visibility specifier. Note that the compiler assumes "public" visibility by
default. Function visibility should always be specified explicitly to assure correctness of the code and improve
readability.

Source File
- JK.sol

Locations

257 */

258 function mint(address _to, uint _amount) onlyOwner canMint returns (bool) {

259 totalSupply = totalSupply.add(_amount);

260 balances[_to] = balances[_to].add(_amount);

261 Mint(_to, _amount);

262

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 269

low SEVERITY
The function definition of "finishMinting" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- JK.sol

Locations

268 */

269 function finishMinting() onlyOwner returns (bool) {

270 mintingFinished = true;

271 MintFinished();

272 return true;

273

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 307

low SEVERITY
The function definition of "pause" lacks a visibility specifier. Note that the compiler assumes "public" visibility
by default. Function visibility should always be specified explicitly to assure correctness of the code and
improve readability.

Source File
- JK.sol

Locations

306 */

307 function pause() onlyOwner whenNotPaused returns (bool) {

308 paused = true;

309 Pause();

310 return true;

311

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 316

low SEVERITY
The function definition of "unpause" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- JK.sol

Locations

315 */

316 function unpause() onlyOwner whenPaused returns (bool) {

317 paused = false;

318 Unpause();

319 return true;

320

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 332

low SEVERITY
The function definition of "transfer" lacks a visibility specifier. Note that the compiler assumes "public" visibility
by default. Function visibility should always be specified explicitly to assure correctness of the code and
improve readability.

Source File
- JK.sol

Locations

331

332 function transfer(address _to, uint _value) whenNotPaused {

333 super.transfer(_to, _value);

334 }

335

336

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 336

low SEVERITY
The function definition of "transferFrom" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- JK.sol

Locations

335

336 function transferFrom(address _from, address _to, uint _value) whenNotPaused {

337 super.transferFrom(_from, _to, _value);

338 }

339 }

340

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 358

low SEVERITY
The function definition of "TokenTimelock" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- JK.sol

Locations

357

358 function TokenTimelock(ERC20Basic _token, address _beneficiary, uint _releaseTime)

{

359 require(_releaseTime > now);

360 token = _token;

361 beneficiary = _beneficiary;

362

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 368

low SEVERITY
The function definition of "claim" lacks a visibility specifier. Note that the compiler assumes "public" visibility
by default. Function visibility should always be specified explicitly to assure correctness of the code and
improve readability.

Source File
- JK.sol

Locations

367 */

368 function claim() {

369 require(msg.sender == beneficiary);

370 require(now >= releaseTime);

371

372

JK COIN | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO
SOLIDITY 0.5.0)
LINE 394

low SEVERITY
The function definition of "mintTimelocked" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- JK.sol

Locations

393 */

394 function mintTimelocked(address _to, uint256 _amount, uint256 _releaseTime)

395 onlyOwner canMint returns (TokenTimelock) {

396

397 TokenTimelock timelock = new TokenTimelock(this, _to, _releaseTime);

398

JK COIN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 9

low SEVERITY
The current pragma Solidity directive is ""^0.4.11"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- JK.sol

Locations

8

9 pragma solidity ^0.4.11;

10

11

12 /**

13

JK COIN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 83

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "balances" is internal.
Other possible visibility settings are public and private.

Source File
- JK.sol

Locations

82

83 mapping(address => uint) balances;

84

85 /**

86 * @dev Fix for the ERC20 short address attack.

87

JK COIN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 139

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "allowed" is internal.
Other possible visibility settings are public and private.

Source File
- JK.sol

Locations

138

139 mapping (address => mapping (address => uint)) allowed;

140

141

142 /**

143

JK COIN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 350

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "token" is internal.
Other possible visibility settings are public and private.

Source File
- JK.sol

Locations

349 // ERC20 basic token contract being held

350 ERC20Basic token;

351

352 // beneficiary of tokens after they are released

353 address beneficiary;

354

JK COIN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 353

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "beneficiary" is
internal. Other possible visibility settings are public and private.

Source File
- JK.sol

Locations

352 // beneficiary of tokens after they are released

353 address beneficiary;

354

355 // timestamp where token release is enabled

356 uint releaseTime;

357

JK COIN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 356

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "releaseTime" is
internal. Other possible visibility settings are public and private.

Source File
- JK.sol

Locations

355 // timestamp where token release is enabled

356 uint releaseTime;

357

358 function TokenTimelock(ERC20Basic _token, address _beneficiary, uint _releaseTime)

{

359 require(_releaseTime > now);

360

JK COIN | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 40

low SEVERITY
Using "constant" as a state mutability modifier in function "max64" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- JK.sol

Locations

39

40 function max64(uint64 a, uint64 b) internal constant returns (uint64) {

41 return a >= b ? a : b;

42 }

43

44

JK COIN | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 44

low SEVERITY
Using "constant" as a state mutability modifier in function "min64" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- JK.sol

Locations

43

44 function min64(uint64 a, uint64 b) internal constant returns (uint64) {

45 return a < b ? a : b;

46 }

47

48

JK COIN | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 48

low SEVERITY
Using "constant" as a state mutability modifier in function "max256" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- JK.sol

Locations

47

48 function max256(uint256 a, uint256 b) internal constant returns (uint256) {

49 return a >= b ? a : b;

50 }

51

52

JK COIN | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 52

low SEVERITY
Using "constant" as a state mutability modifier in function "min256" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- JK.sol

Locations

51

52 function min256(uint256 a, uint256 b) internal constant returns (uint256) {

53 return a < b ? a : b;

54 }

55

56

JK COIN | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 70

low SEVERITY
Using "constant" as a state mutability modifier in function "balanceOf" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- JK.sol

Locations

69 uint public totalSupply;

70 function balanceOf(address who) constant returns (uint);

71 function transfer(address to, uint value);

72 event Transfer(address indexed from, address indexed to, uint value);

73 }

74

JK COIN | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 111

low SEVERITY
Using "constant" as a state mutability modifier in function "balanceOf" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- JK.sol

Locations

110 */

111 function balanceOf(address _owner) constant returns (uint balance) {

112 return balances[_owner];

113 }

114

115

JK COIN | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 123

low SEVERITY
Using "constant" as a state mutability modifier in function "allowance" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- JK.sol

Locations

122 contract ERC20 is ERC20Basic {

123 function allowance(address owner, address spender) constant returns (uint);

124 function transferFrom(address from, address to, uint value);

125 function approve(address spender, uint value);

126 event Approval(address indexed owner, address indexed spender, uint value);

127

JK COIN | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 183

low SEVERITY
Using "constant" as a state mutability modifier in function "allowance" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- JK.sol

Locations

182 */

183 function allowance(address _owner, address _spender) constant returns (uint

remaining) {

184 return allowed[_owner][_spender];

185 }

186

187

JK COIN | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 58

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- JK.sol

Locations

57 if (!assertion) {

58 throw;

59 }

60 }

61 }

62

JK COIN | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 90

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- JK.sol

Locations

89 if(msg.data.length < size + 4) {

90 throw;

91 }

92 _;

93 }

94

JK COIN | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 171

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- JK.sol

Locations

170 // https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729

171 if ((_value != 0) && (allowed[msg.sender][_spender] != 0)) throw;

172

173 allowed[msg.sender][_spender] = _value;

174 Approval(msg.sender, _spender, _value);

175

JK COIN | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 213

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- JK.sol

Locations

212 if (msg.sender != owner) {

213 throw;

214 }

215 _;

216 }

217

JK COIN | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 248

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- JK.sol

Locations

247 modifier canMint() {

248 if(mintingFinished) throw;

249 _;

250 }

251

252

JK COIN | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 292

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- JK.sol

Locations

291 modifier whenNotPaused() {

292 if (paused) throw;

293 _;

294 }

295

296

JK COIN | Security Analysis

SWC-111 | USE OF THE "THROW" KEYWORD IS DEPRECATED.
LINE 300

low SEVERITY
"throw" is disallowed as of Solidity version 0.5.0. Use one of "revert()", "require()" or "assert()" instead

Source File
- JK.sol

Locations

299 modifier whenPaused {

300 if (!paused) throw;

301 _;

302 }

303

304

JK COIN | Security Analysis

SWC-111 | USE OF THE "VAR" KEYWORD IS DEPRECATED.
LINE 149

low SEVERITY
The keyword "var" is disallowed as of Solidity version 0.5.0. It is not possible anymore to create variable
declarations without static types. Note that it is always preferable to be as explicit as possible when writing
Solidity code.

Source File
- JK.sol

Locations

148 function transferFrom(address _from, address _to, uint _value) onlyPayloadSize(3 *

32) {

149 var _allowance = allowed[_from][msg.sender];

150

151 // Check is not needed because sub(_allowance, _value) will already throw if this

condition is not met

152 // if (_value > _allowance) throw;

153

JK COIN | Security Analysis

SWC-119 | STATE VARIABLE SHADOWS ANOTHER STATE
VARIABLE.
LINE 244

low SEVERITY
The state variable "totalSupply" in contract "MintableToken" shadows another state variable with the same
name "totalSupply" in contract "ERC20Basic".

Source File
- JK.sol

Locations

243 bool public mintingFinished = false;

244 uint public totalSupply = 0;

245

246

247 modifier canMint() {

248

JK COIN | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

JK COIN | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

