
MessaageBit

Smart Contract
Audit Report

11 Jan 2023

MessaageBit | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

MessaageBit | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

MessaageBit MB Binance Smart Chain

| Addresses

Contract address 0xb6e751BDD09d2d91452A1082D5D0f31cCd260924

Contract deployer address 0xBDfF438acc08065daB973B088e4dd7af7f0C45A4

| Project Website

https://www.messaagebit.com/

| Codebase

https://bscscan.com/address/0xb6e751BDD09d2d91452A1082D5D0f31cCd260924#code

https://www.messaagebit.com/
https://bscscan.com/address/0xb6e751BDD09d2d91452A1082D5D0f31cCd260924#code

MessaageBit | Security Analysis

SUMMARY

MessaageBit provides Messages App, crypto analytics and portfolio management for the BNB Chain tokens
and aims to improve crypto Apps experience. Comming products: - Bridge - App - Swap - Lending Dapps: - CMC
& CG - Big call & AMA groups been onboarded. Onder, Caesar, Gollum, VatorCapital, Cryptocat, Bossy, Future
Lounge, Procify Ads, DefiApetalk, Sherlock, Shadowcall, HulkGems, Phoniex, Doxxed Always, PythagorasDev

| Contract Summary

Documentation Quality

MessaageBit provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by MessaageBit with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 737.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 125, 157, 180, 181, 216, 252, 479, 720, 720, 720, 720, 721, 721, 740, 740, 740, 740, 741, 741, 741,
741, 872, 874, 911, 957, 976, 982 and 874.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 26.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 873, 874, 874, 958, 958, 959, 960, 1085 and 1086.

MessaageBit | Security Analysis

CONCLUSION

We have audited the MessaageBit project released on January 2023 to discover issues and identify potential
security vulnerabilities in MessaageBit Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the MessaageBit smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set and out of bounds array access
which the index access expression can cause an exception in case of the use of an invalid array index value.

MessaageBit | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegate calls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

MessaageBit | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

MessaageBit | Security Analysis

SMART CONTRACT ANALYSIS

Started Tuesday Jan 10 2023 03:23:11 GMT+0000 (Coordinated Universal Time)

Finished Wednesday Jan 11 2023 08:18:58 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File MessaageBit.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 125

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

124 function add(uint256 a, uint256 b) internal pure returns (uint256) {

125 uint256 c = a + b;

126 require(c >= a, "SafeMath: addition overflow");

127

128 return c;

129

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 157

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

156 require(b <= a, errorMessage);

157 uint256 c = a - b;

158

159 return c;

160 }

161

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 180

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

179

180 uint256 c = a * b;

181 require(c / a == b, "SafeMath: multiplication overflow");

182

183 return c;

184

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 181

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

180 uint256 c = a * b;

181 require(c / a == b, "SafeMath: multiplication overflow");

182

183 return c;

184 }

185

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 216

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

215 require(b > 0, errorMessage);

216 uint256 c = a / b;

217 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

218

219 return c;

220

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 252

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

251 require(b != 0, errorMessage);

252 return a % b;

253 }

254 }

255

256

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 479

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

478 _owner = address(0);

479 _lockTime = now + time;

480 emit OwnershipTransferred(_owner, address(0));

481 }

482

483

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 720

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

719 uint256 private constant MAX = ~uint256(0);

720 uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

721 uint256 private _rTotal = (MAX - (MAX % _tTotal));

722 uint256 private _tFeeTotal;

723

724

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 720

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

719 uint256 private constant MAX = ~uint256(0);

720 uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

721 uint256 private _rTotal = (MAX - (MAX % _tTotal));

722 uint256 private _tFeeTotal;

723

724

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 720

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

719 uint256 private constant MAX = ~uint256(0);

720 uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

721 uint256 private _rTotal = (MAX - (MAX % _tTotal));

722 uint256 private _tFeeTotal;

723

724

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 720

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

719 uint256 private constant MAX = ~uint256(0);

720 uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

721 uint256 private _rTotal = (MAX - (MAX % _tTotal));

722 uint256 private _tFeeTotal;

723

724

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 721

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

720 uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

721 uint256 private _rTotal = (MAX - (MAX % _tTotal));

722 uint256 private _tFeeTotal;

723

724 string private _name = "MessaageBit";

725

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 721

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

720 uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

721 uint256 private _rTotal = (MAX - (MAX % _tTotal));

722 uint256 private _tFeeTotal;

723

724 string private _name = "MessaageBit";

725

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 740

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

739

740 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

741 uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

742

743 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

744

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 740

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

739

740 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

741 uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

742

743 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

744

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 740

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

739

740 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

741 uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

742

743 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

744

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 740

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

739

740 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

741 uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

742

743 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

744

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 741

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

740 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

741 uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

742

743 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

744 event SwapAndLiquifyEnabledUpdated(bool enabled);

745

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 741

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

740 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

741 uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

742

743 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

744 event SwapAndLiquifyEnabledUpdated(bool enabled);

745

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 741

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

740 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

741 uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

742

743 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

744 event SwapAndLiquifyEnabledUpdated(bool enabled);

745

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 741

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

740 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

741 uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

742

743 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

744 event SwapAndLiquifyEnabledUpdated(bool enabled);

745

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 872

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

871 require(_isExcluded[account], "Account is already excluded");

872 for (uint256 i = 0; i < _excluded.length; i++) {

873 if (_excluded[i] == account) {

874 _excluded[i] = _excluded[_excluded.length - 1];

875 _tOwned[account] = 0;

876

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 874

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

873 if (_excluded[i] == account) {

874 _excluded[i] = _excluded[_excluded.length - 1];

875 _tOwned[account] = 0;

876 _isExcluded[account] = false;

877 _excluded.pop();

878

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 911

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

910 _maxTxAmount = _tTotal.mul(maxTxPercent).div(

911 10**2

912);

913 }

914

915

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 957

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

956 uint256 tSupply = _tTotal;

957 for (uint256 i = 0; i < _excluded.length; i++) {

958 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

959 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

960 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

961

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 976

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

975 return _amount.mul(_taxFee).div(

976 10**2

977);

978 }

979

980

MessaageBit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 982

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

981 return _amount.mul(_liquidityFee).div(

982 10**2

983);

984 }

985

986

MessaageBit | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 874

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MessaageBit.sol

Locations

873 if (_excluded[i] == account) {

874 _excluded[i] = _excluded[_excluded.length - 1];

875 _tOwned[account] = 0;

876 _isExcluded[account] = false;

877 _excluded.pop();

878

MessaageBit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 26

low SEVERITY
The current pragma Solidity directive is ""^0.6.12"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MessaageBit.sol

Locations

25

26 pragma solidity ^0.6.12;

27 // SPDX-License-Identifier: Unlicensed

28 interface IERC20 {

29

30

MessaageBit | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 737

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- MessaageBit.sol

Locations

736

737 bool inSwapAndLiquify;

738 bool public swapAndLiquifyEnabled = true;

739

740 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

741

MessaageBit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 873

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MessaageBit.sol

Locations

872 for (uint256 i = 0; i < _excluded.length; i++) {

873 if (_excluded[i] == account) {

874 _excluded[i] = _excluded[_excluded.length - 1];

875 _tOwned[account] = 0;

876 _isExcluded[account] = false;

877

MessaageBit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 874

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MessaageBit.sol

Locations

873 if (_excluded[i] == account) {

874 _excluded[i] = _excluded[_excluded.length - 1];

875 _tOwned[account] = 0;

876 _isExcluded[account] = false;

877 _excluded.pop();

878

MessaageBit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 874

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MessaageBit.sol

Locations

873 if (_excluded[i] == account) {

874 _excluded[i] = _excluded[_excluded.length - 1];

875 _tOwned[account] = 0;

876 _isExcluded[account] = false;

877 _excluded.pop();

878

MessaageBit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 958

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MessaageBit.sol

Locations

957 for (uint256 i = 0; i < _excluded.length; i++) {

958 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

959 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

960 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

961 }

962

MessaageBit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 958

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MessaageBit.sol

Locations

957 for (uint256 i = 0; i < _excluded.length; i++) {

958 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

959 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

960 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

961 }

962

MessaageBit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 959

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MessaageBit.sol

Locations

958 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

959 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

960 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

961 }

962 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

963

MessaageBit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 960

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MessaageBit.sol

Locations

959 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

960 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

961 }

962 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

963 return (rSupply, tSupply);

964

MessaageBit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1085

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MessaageBit.sol

Locations

1084 address[] memory path = new address[](2);

1085 path[0] = address(this);

1086 path[1] = uniswapV2Router.WETH();

1087

1088 _approve(address(this), address(uniswapV2Router), tokenAmount);

1089

MessaageBit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1086

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MessaageBit.sol

Locations

1085 path[0] = address(this);

1086 path[1] = uniswapV2Router.WETH();

1087

1088 _approve(address(this), address(uniswapV2Router), tokenAmount);

1089

1090

MessaageBit | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

MessaageBit | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

