
Elancing

Smart Contract
Audit Report

22 Jan 2023

Elancing | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Elancing | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Elancing ELC BSC

| Addresses

Contract address 0x0FBb8C9f52C354eE8072Fdf314F4cFf6dEBB31c8

Contract deployer address 0xeFc979c8F20bED441DA0206C26AC6cE40144C2aB

| Project Website

https://elancing.net/

| Codebase

https://bscscan.com/address/0x0FBb8C9f52C354eE8072Fdf314F4cFf6dEBB31c8#code

https://elancing.net/
https://bscscan.com/address/0x0FBb8C9f52C354eE8072Fdf314F4cFf6dEBB31c8#code

Elancing | Security Analysis

SUMMARY

Elancing is a revolutionary decentralized marketplace for freelance & outsourcing services. Uses advanced
PoW technology for low commission. $ELC holders receive 2% rewards in ETH & 2% BNB dividends from
service fees! Excellent audit score | Automated buyback & burn mechanism for price support & accumulation |
Beta product ready for use & exploration | Huge marketing & Cex Listings offers!

| Contract Summary

Documentation Quality

This project has a standard of documentation.

Technical description provided.

Code Quality

The quality of the code in this project is up to standard.

The official Solidity style guide is followed.

Test Scope

Project test coverage is 100% (Via Codebase).

| Audit Findings Summary

Issues Found

SWC-101 | Arithmetic operation issues discovered on lines 55, 67, 77, 78, 89, 101, 110, 114, 122, 125,
130, 199, 569, 587, 629, 689, 840, 850, 854, 948, 977, 978, 1060, 1113, 1115, 1131, 1134, 1139, 1144,
1149, 1151, 1158, 1183, 1191, 1193, 1195, 1202, 1204, 1269, and 1273.
SWC-101 | Compiler-rewritable " - 1" discovered on lines 199 and 1269.
SWC-110 | Out of bounds array access issues discovered on lines 172, 200, 205, 846, 1121, 1122, 1228,
1229, 1249, 1250, 1266, 1267, and 1269.
SWC-115 | Use of "Tx.Origin" as a part of authorization Control on lines 1218 and 1345.

Elancing | Security Analysis

CONCLUSION

We have audited the Elancing project which has released on January 2023 to discover issues and identify
potential security vulnerabilities in Elancing Project. This process is used to find technical issues and security
loopholes that find some common issues in the code.

The security audit report produced satisfactory results with low-risk issues.

Most issues found were low severity and any critical issue such as High Vulnerability was not found. Except for
all other issues that were of negligible importance and mostly referred to coding standards and inefficiencies
such as arithmetic operation issues, the use of "tx.origin" as a part of authorization control and out of bounds
array access which the index access expression can cause an exception in case of use of an invalid array
index value.

Elancing | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Check-Effect
Interaction

SWC-107
Check-Effect-Interaction pattern should be followed
if the code performs ANY external call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callerr

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Elancing | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Elancing | Security Analysis

SMART CONTRACT ANALYSIS

Started Sat Jan 21 2023 23:12:46 GMT+0000 (Coordinated Universal Time)

Finished Sun Jan 22 2023 02:20:50 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File ELC.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 55

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

54 function add(uint256 a, uint256 b) internal pure returns (uint256) {

55 uint256 c = a + b;

56 require(c >= a, "SafeMath: addition overflow");

57

58 return c;

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 67

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

66 require(b <= a, errorMessage);

67 uint256 c = a - b;

68

69 return c;

70 }

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 77

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

76

77 uint256 c = a * b;

78 require(c / a == b, "SafeMath: multiplication overflow");

79

80 return c;

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 78

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

77 uint256 c = a * b;

78 require(c / a == b, "SafeMath: multiplication overflow");

79

80 return c;

81 }

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 89

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

88 require(b > 0, errorMessage);

89 uint256 c = a / b;

90 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

91

92 return c;

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 101

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

100 require(b != 0, errorMessage);

101 return a % b;

102 }

103 }

104

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 110

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

109 function mul(int256 a, int256 b) internal pure returns (int256) {

110 int256 c = a * b;

111

112 // Detect overflow when multiplying MIN_INT256 with -1

113 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 114

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

113 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

114 require((b == 0) || (c / b == a));

115 return c;

116 }

117 function div(int256 a, int256 b) internal pure returns (int256) {

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 122

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

121 // Solidity already throws when dividing by 0.

122 return a / b;

123 }

124 function sub(int256 a, int256 b) internal pure returns (int256) {

125 int256 c = a - b;

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 125

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

124 function sub(int256 a, int256 b) internal pure returns (int256) {

125 int256 c = a - b;

126 require((b >= 0 && c <= a) || (b < 0 && c > a));

127 return c;

128 }

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 130

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

129 function add(int256 a, int256 b) internal pure returns (int256) {

130 int256 c = a + b;

131 require((b >= 0 && c >= a) || (b < 0 && c < a));

132 return c;

133 }

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 199

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

198 uint index = map.indexOf[key];

199 uint lastIndex = map.keys.length - 1;

200 address lastKey = map.keys[lastIndex];

201

202 map.indexOf[lastKey] = index;

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 569

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

568

569 uint256 constant internal magnitude = 2**128;

570 uint256 internal magnifiedDividendPerShare;

571 uint256 public totalDividendsDistributed;

572

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 587

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

586 magnifiedDividendPerShare = magnifiedDividendPerShare.add(

587 (amount).mul(magnitude) / totalSupply()

588);

589 emit DividendsDistributed(msg.sender, amount);

590

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 629

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

628 function accumulativeDividendOf(address _owner) public view override

returns(uint256) {

629 return magnifiedDividendPerShare.mul(balanceOf(_owner)).toInt256Safe()

630 .add(magnifiedDividendCorrections[_owner]).toUint256Safe() / magnitude;

631 }

632

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 689

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

688 claimWait = 3600;

689 minimumTokenBalanceForDividends = minBalance * 10 ** 9;

690 }

691

692 function _transfer(address, address, uint256) internal pure override {

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 840

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

839 while(gasUsed < gas && iterations < numberOfTokenHolders) {

840 _lastProcessedIndex++;

841

842 if(_lastProcessedIndex >= tokenHoldersMap.keys.length) {

843 _lastProcessedIndex = 0;

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 850

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

849 if(processAccount(payable(account), true)) {

850 claims++;

851 }

852 }

853

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 854

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

853

854 iterations++;

855

856 uint256 newGasLeft = gasleft();

857

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 948

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

947

948 totalFee = marketingFee + rewardsFee + teamFee + validatorFee + buyBackFee;

949

950 marketingWallet = 0x862cD7bC48eBaB97436eE29953c62A8aaD2fBCDC;

951 teamWallet = 0xffa1cF4835b3D41A02b7e4b565186ece8eF55Be8;

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 977

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

976

977 _mint(owner(), 1_000_000_000 * (10 ** 9));

978 swapTokensAtAmount = totalSupply() / 5000;

979

980 priceImpactPercent = 10;

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 978

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

977 _mint(owner(), 1_000_000_000 * (10 ** 9));

978 swapTokensAtAmount = totalSupply() / 5000;

979

980 priceImpactPercent = 10;

981 buybackThreshold = 1_000_000;

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1060

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1059

1060 totalFee = marketingFee + rewardsFee + teamFee + validatorFee + buyBackFee;

1061

1062 require(totalFee <= 10, "Buy fee cannot be more than 10%");

1063 }

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1113

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1112

1113 uint256 price = getPriceOfToken(1 * 10 ** decimals());

1114

1115 uint256 bnbShare = marketingFee + rewardsFee + teamFee + validatorFee +

buyBackFee;

1116

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1115

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1114

1115 uint256 bnbShare = marketingFee + rewardsFee + teamFee + validatorFee +

buyBackFee;

1116

1117 if(contractTokenBalance > 0 && bnbShare > 0) {

1118 uint256 initialBalance = address(this).balance;

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1131

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1130

1131 uint256 newBalance = address(this).balance - initialBalance;

1132

1133 if(marketingFee > 0) {

1134 uint256 marketingBNB = newBalance * marketingFee / bnbShare;

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1134

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1133 if(marketingFee > 0) {

1134 uint256 marketingBNB = newBalance * marketingFee / bnbShare;

1135 sendBNB(payable(marketingWallet), marketingBNB);

1136 }

1137

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1139

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1138 if(teamFee > 0) {

1139 uint256 teamBNB = newBalance * teamFee / bnbShare;

1140 sendBNB(payable(teamWallet), teamBNB);

1141 }

1142

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1144

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1143 if(validatorFee > 0) {

1144 uint256 validatorBNB = newBalance * validatorFee / bnbShare;

1145 sendBNB(payable(validatorWallet), validatorBNB);

1146 }

1147

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1149

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1148 if(buyBackFee > 0) {

1149 buybackBNB += newBalance * buyBackFee / bnbShare;

1150

1151 if (buybackBNB > buybackThreshold && buybackEnabled && (price <= allTimeHigh *

(100 - priceImpactPercent) / 100)){

1152 buyBackTokens(buybackBNB);

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1151

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1150

1151 if (buybackBNB > buybackThreshold && buybackEnabled && (price <= allTimeHigh *

(100 - priceImpactPercent) / 100)){

1152 buyBackTokens(buybackBNB);

1153 buybackBNB = 0;

1154 }

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1158

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1157 if(rewardsFee > 0) {

1158 uint256 rewardBNB = newBalance * rewardsFee / bnbShare;

1159 swapAndSendDividends(rewardBNB);

1160 }

1161 }

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1183

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1182

1183 uint256 price = getPriceOfToken(1 * 10 ** decimals());

1184

1185 if (price >= allTimeHigh) {

1186 allTimeHigh = price;

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1191

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1190 _totalFees = totalFee;

1191 require (block.timestamp - traded[from] >= cooldown, "Wait before selling.

Cooldown enabled.");

1192

1193 uint256 price = getPriceOfToken(1 * 10 ** decimals());

1194

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1193

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1192

1193 uint256 price = getPriceOfToken(1 * 10 ** decimals());

1194

1195 if (buybackBNB > buybackThreshold && buybackEnabled && (price <= allTimeHigh *

(100 - priceImpactPercent) / 100)){

1196 buyBackTokens(buybackBNB);

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1195

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1194

1195 if (buybackBNB > buybackThreshold && buybackEnabled && (price <= allTimeHigh *

(100 - priceImpactPercent) / 100)){

1196 buyBackTokens(buybackBNB);

1197 buybackBNB = 0;

1198 }

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1202

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1201 }

1202 uint256 fees = amount * _totalFees / 100;

1203

1204 amount = amount - fees;

1205

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1204

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1203

1204 amount = amount - fees;

1205

1206 super._transfer(from, address(this), fees);

1207 }

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1269

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1268

1269 price = (uniswapV2Router.getAmountsOut(amount, path))[path.length - 1];

1270 }

1271

1272 function setSwapTokensAtAmount(uint256 newAmount) external onlyOwner{

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1273

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1272 function setSwapTokensAtAmount(uint256 newAmount) external onlyOwner{

1273 require(newAmount > totalSupply() / 100_000, "SwapTokensAtAmount must be greater

than 0.001% of total supply");

1274 swapTokensAtAmount = newAmount;

1275 }

1276

Elancing | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 199

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

198 uint index = map.indexOf[key];

199 uint lastIndex = map.keys.length - 1;

200 address lastKey = map.keys[lastIndex];

201

202 map.indexOf[lastKey] = index;

Elancing | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1269

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1268

1269 price = (uniswapV2Router.getAmountsOut(amount, path))[path.length - 1];

1270 }

1271

1272 function setSwapTokensAtAmount(uint256 newAmount) external onlyOwner{

Elancing | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1218

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- ELC.sol

Locations

1217 try dividendTracker.process(gas) returns (uint256 iterations, uint256 claims,

uint256 lastProcessedIndex) {

1218 emit ProcessedDividendTracker(iterations, claims, lastProcessedIndex, true, gas,

tx.origin);

1219 }

1220 catch {

1221

Elancing | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1345

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- ELC.sol

Locations

1344 (uint256 iterations, uint256 claims, uint256 lastProcessedIndex) =

dividendTracker.process(gas);

1345 emit ProcessedDividendTracker(iterations, claims, lastProcessedIndex, false, gas,

tx.origin);

1346 }

1347

1348 function claim() external {

Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 172

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

171 function getKeyAtIndex(Map storage map, uint index) public view returns (address) {

172 return map.keys[index];

173 }

174

175 function size(Map storage map) public view returns (uint) {

Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 200

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

199 uint lastIndex = map.keys.length - 1;

200 address lastKey = map.keys[lastIndex];

201

202 map.indexOf[lastKey] = index;

203 delete map.indexOf[key];

Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 205

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

204

205 map.keys[index] = lastKey;

206 map.keys.pop();

207 }

208 }

Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 846

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

845

846 address account = tokenHoldersMap.keys[_lastProcessedIndex];

847

848 if(canAutoClaim(lastClaimTimes[account])) {

849 if(processAccount(payable(account), true)) {

Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1121

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

1120 address[] memory path = new address[](2);

1121 path[0] = address(this);

1122 path[1] = uniswapV2Router.WETH();

1123

1124 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1122

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

1121 path[0] = address(this);

1122 path[1] = uniswapV2Router.WETH();

1123

1124 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

1125 contractTokenBalance,

Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1228

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

1227 address[] memory path = new address[](2);

1228 path[0] = uniswapV2Router.WETH();

1229 path[1] = rewardToken;

1230

1231 uniswapV2Router.swapExactETHForTokensSupportingFeeOnTransferTokens{value: amount}(

Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1229

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

1228 path[0] = uniswapV2Router.WETH();

1229 path[1] = rewardToken;

1230

1231 uniswapV2Router.swapExactETHForTokensSupportingFeeOnTransferTokens{value: amount}(

1232 0,

Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1249

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

1248 address[] memory path = new address[](2);

1249 path[0] = uniswapV2Router.WETH();

1250 path[1] = address(this);

1251

1252 uniswapV2Router.swapExactETHForTokensSupportingFeeOnTransferTokens{value:

_amount}(

Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1250

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

1249 path[0] = uniswapV2Router.WETH();

1250 path[1] = address(this);

1251

1252 uniswapV2Router.swapExactETHForTokensSupportingFeeOnTransferTokens{value:

_amount}(

1253 0,

Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1266

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

1265 address[] memory path = new address[](2);

1266 path[0] = address(this);

1267 path[1] = uniswapV2Router.WETH();

1268

1269 price = (uniswapV2Router.getAmountsOut(amount, path))[path.length - 1];

Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1267

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

1266 path[0] = address(this);

1267 path[1] = uniswapV2Router.WETH();

1268

1269 price = (uniswapV2Router.getAmountsOut(amount, path))[path.length - 1];

1270 }

Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1269

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

1268

1269 price = (uniswapV2Router.getAmountsOut(amount, path))[path.length - 1];

1270 }

1271

1272 function setSwapTokensAtAmount(uint256 newAmount) external onlyOwner{

Elancing | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Elancing | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

