oty
ooo
v

Elancing

Smart Contract
Audit Report

@ SYSFIXED 22 Jan 2023

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

Elancing | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

Elancing | Security Analysis

Project name Token ticker Blockchain
Elancing ELC BSC
| Addresses

Contract address

0x0FBb8C9f52C354eE8072Fdf314F4cFf6dEBB31c8

Contract deployer address

OxeFc979c8F20bED441DA0206C26AC6cE40144C2aB

| Project Website

https://elancing.net/

| Codebase

https://bscscan.com/address/0x0FBb8C9f52C354eE8072Fdf314F4cFf6dEBB31c8#code

https://elancing.net/
https://bscscan.com/address/0x0FBb8C9f52C354eE8072Fdf314F4cFf6dEBB31c8#code

@S‘I"‘SH}I{ED Elancing | Security Analysis

SUMMARY

Elancing is a revolutionary decentralized marketplace for freelance & outsourcing services. Uses advanced
PoW technology for low commission. SELC holders receive 2% rewards in ETH & 2% BNB dividends from
service fees! Excellent audit score | Automated buyback & burn mechanism for price support & accumulation |
Beta product ready for use & exploration | Huge marketing & Cex Listings offers!

| Contract Summary

Documentation Quality

This project has a standard of documentation.
e Technical description provided.

Code Quality

The quality of the code in this project is up to standard.
e The official Solidity style guide is followed.

Test Scope

Project test coverage is 100% (Via Codebase).

| Audit Findings Summary

Issues Found

SWC-101 | Arithmetic operation issues discovered on lines 55, 67,77, 78,89, 101,110, 114, 122, 125,
130, 199, 569, 587, 629, 689, 840, 850, 854, 948,977,978, 1060, 1113, 1115, 1131, 1134, 1139, 1144,
1149,1151,1158,1183, 1191, 1193, 1195, 1202, 1204, 1269, and 1273.

SWC-101 | Compiler-rewritable " - 1" discovered on lines 199 and 1269.

SWC-110 | Out of bounds array access issues discovered on lines 172, 200, 205, 846, 1121, 1122, 1228,
1229, 1249, 1250, 1266, 1267, and 1269.

SWC-115 | Use of "Tx.Origin" as a part of authorization Control on lines 1218 and 1345.

@ SYSFIXED Elancing | Security Analysis

CONCLUSION

We have audited the Elancing project which has released on January 2023 to discover issues and identify
potential security vulnerabilities in Elancing Project. This process is used to find technical issues and security
loopholes that find some common issues in the code.

The security audit report produced satisfactory results with low-risk issues.

Most issues found were low severity and any critical issue such as High Vulnerability was not found. Except for
all other issues that were of negligible importance and mostly referred to coding standards and inefficiencies
such as arithmetic operation issues, the use of "tx.origin" as a part of authorization control and out of bounds
array access which the index access expression can cause an exception in case of use of an invalid array
index value.

£ SYSFIXED

AUDIT RESULT

Elancing | Security Analysis

Dependency should not be possible.

Article Category Description Result
SWC-100 Functions and state variables visibility should be
Default Visibility SWC-108 set explicitly. Visibility levels should be specified PASS
consciously.
Integer Overflow SRk T If unchecked math is used, all math operations ISSUE
and Underflow should be safe from overflows and underflows. FOUND
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same
Floating Pragma SWC-103 compiler version and flags that they have been PASS
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.
Check-Effect Check-Effect-Interaction pattern should be followed
: SWcC-107) PASS
Interaction if the code performs ANY external call.
R Properly functioning code should never reach a ISSUE
Assert Violation SWC-110 »
failing assert statement. FOUND
Deprecated Solidit
s . < SWC-111 Deprecated built-in functions should never be used. PASS
Functions
Delegate call to Delegatecalls should only be allowed to trusted
SWC-112 PASS
Untrusted Callerr addresses.
DoS (Denial of SWC-113 Execution of the code should never be blocked by a PASS
Service) SWC-128 specific contract state unless required.
. Race Conditions and Transactions Order
Race Conditions SWC-114 PASS

@‘S\FSFHEU Elancing | Security Analysis

Authorization s e ISSUE
o SWC-115 | tx.origin should not be used for authorization.
through tx.origin FOUND
Block values as a . .
. SWC-116 | Block numbers should not be used for time calculations. PASS
proxy for time
. . SWC-117 . _)
Signature Unique Signed messages should always have a unique id. A
SWC-121 _)) PASS
Id transaction hash should not be used as a unique id.
SWC-122
Shadowing State
. g SWC-119 State variables should not be shadowed. PASS
Variable
Weak Sources of Random values should never be generated from Chain
SWC-120)) PASS
Randomness Attributes or be predictable.
When inheriting multiple contracts, especially if they have
Incorrect identical functions, a developer should carefully specify
. SWC-125 | |) _) PASS
Inheritance Order inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

@sﬁrmm Elancing | Security Analysis

SMART CONTRACT ANALYSIS

Started Sat Jan 21 2023 23:12:46 GMT+0000 (Coordinated Universal Time)
Finished Sun Jan 22 2023 02:20:50 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File ELC.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

£ SYSFIXED

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

£ SYSFIXED

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED low | acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low | acknowledged
SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED low | acknowledged
SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED low | acknowledged
SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low | acknowledged
SWC-101 | COMPILER-REWRITABLE "<UINT>- 1" DISCOVERED low | acknowledged
SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low | acknowledged
SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 | OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 | OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 | OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 | OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 | OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 | OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 | OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 | OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 | OUT OF BOUNDS ARRAY ACCESS low | acknowledged

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 55

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

54 function add(uint256 a, uint256 b) internal pure returns (uint256) {
55 uint256 ¢ = a + b;

56 require(c >= a, "SafeMath: addition overflow');

57

58 return c;

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 67

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

66 require(b <= a, errorMessage);
67 uint256 ¢ = a - b;

68

69 return c;

70 }

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 77

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

76

77 uint256 ¢ = a * b;

78 require(c / a == b, "SafeMath: multiplication overflow');
79

80 return c;

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 78

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

77 uint256 ¢ = a * b;

78 require(c / a == b, "SafeMath: nultiplication overflow");
79

80 return c;

81 }

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 89

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

88 require(b > 0, errorMessage);

89 uint256 ¢ = a / b;

90 /] assert(a ==Db * c¢c + a %b); // There is no case in which this doesn't hold
91

92 return c;

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 107

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

100 require(b !'= 0, errorMessage);
101 return a % b;

102 }

103 }

104

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 110

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol
Locations
109 function mul (i nt256 a, int256 b) internal pure returns (int256) {
110 int256 ¢ = a * b;
111
112 /1l Detect overflow when multiplying MN_INT256 with -1
113 require(c !'= MN_INT256 || (a & MN_INT256) !'= (b & M N_INT256));

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED

LINE 114

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol
Locations
113 require(c !'= MN.INT256 || (a & MN_INT256) != (b & M N_|I NT256));
114 require((b ==0) || (c/ b ==a));
115 return c;
116 }
117 function div(int256 a, int256 b) internal pure returns (int256) {

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 122

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

121 /1 Solidity already throws when dividing by O.

122 return a / b;

123 }

124 function sub(int256 a, int256 b) internal pure returns (int256) {
125 int256 ¢ = a - b;

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED

LINE 125

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

124 function sub(int256 a, int256 b) internal pure returns (int256) {
125 int256 ¢ = a - b;

126 require((b >=0 & c <=a) || (b <0 &k c > a));

127 return c;

128 }

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 130

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

129 function add(int256 a, int256 b) internal pure returns (int256) {
130 int256 ¢ = a + b;

131 require((b >=0 & c >=a) || (b <0 &k c < a));

132 return c;

133}

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 199

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

198 uint index = map.indexX [key];

199 uint |astlndex = map. keys.length - 1;
200 address | ast Key = nmap. keys[| ast | ndex] ;
201

202 map. i ndexOF [| ast Key] = i ndex;

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 569

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

568

569 ui nt 256 constant internal magnitude = 2**128;
570 ui nt 256 internal magnifi edDi vi dendPer Shar e;
571 ui nt 256 public total Di vi dendsDi stri buted;

572

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 587

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

586 magni fi edDi vi dendPer Share = nagni fi edDi vi dendPer Shar e. add(
587 (anount) . nul (nagni tude) / total Supply()

588);

589 emt DividendsDi stributed(nmsg. sender, anpunt);

590

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 629

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

628 function accumnul ati veDi vi dendOf (address _owner) public view override
returns(ui nt 256) {

629 return nmagni fi edDi vi dendPer Shar e. mul (bal anceOf (_owner)) .t ol nt 256Saf e()
630 .add(magni fi edDi vi dendCorrections[_owner]).toU nt256Safe() / nagnitude;
631 }

632

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 689

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

688 clai mMit = 3600;

689 m ni nunlfokenBal anceFor Di vi dends = mi nBal ance * 10 ** 9;

690 }

691

692 function _transfer(address, address, uint256) internal pure override {

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 840

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

839 whi | e(gasUsed < gas && iterations < nunber Of TokenHol ders) {
840 _| ast Processed| ndex++;

841

842 i f(_lastProcessedl ndex >= t okenHol der sMap. keys. | ength) {
843 | astProcessedl ndex = 0;

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 850

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol
Locations
849 i f (processAccount (payabl e(account), true)) {
850 cl ai ns++;
851 }
852 }
853

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 854

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

853

854 iterations++;

855

856 ui nt 256 newGasLeft = gasleft();
857

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED

LINE 948

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File

- ELC.sol

Locations
947
948 t ot al Fee = marketi ngFee + rewardsFee + teanfee + validatorFee + buyBackFee;
949

950 mar ket i ng\Wal | et = 0x862cD7bC48eBaB97436eE29953c62A8aaD2f BCDC;
951 teanmal | et = OxffalcF4835b3D41A02b7e4b565186ece8eF55Be8;

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 977

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

976

977 _mint(owner(), 1 _000_000 000 * (10 ** 9));
978 swapTokensAt Amount = total Supply() / 5000;
979

980 pricel npact Percent = 10;

&) SIS

IXED

Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED

LINE 978

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File

- ELC.sol

Locations
977 _mnt(owner(),
978 swapTokensAt Amount
979
980 pri cel npact Per cent
981 buybackThreshol d =

1

1_000_000_000 * (10 ** 9));

tot al Supply() / 5000;

10;
_000_000;

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1060

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1059

1060 total Fee = marketingFee + rewardsFee + teanfee + validatorFee + buyBackFee
1061

1062 require(total Fee <= 10, "Buy fee cannot be nore than 10%);

1063 }

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1113

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1112

1113 ui nt 256 price = getPriceOf Token(1l * 10 ** decimals());

1114

1115 ui nt 256 bnbShare = marketi ngFee + rewardsFee + teanfee + validatorFee +
buyBackFee;

1116

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1115

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1114

1115 ui nt 256 bnbShare = marketi ngFee + rewardsFee + teanfFee + validatorFee +
buyBackFee;

1116

1117 i f(contract TokenBal ance > 0 & bnbShare > 0) {

1118 uint 256 initial Bal ance = address(this).bal ance

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1131

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1130

1131 ui nt 256 newBal ance = address(this).balance - initialBal ance;
1132

1133 i f(marketingFee > 0) {

1134 ui nt 256 mar keti ngBNB = newBal ance * marketi ngFee / bnbShare;

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1134

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1133 i f(marketingFee > 0) {

1134 ui nt 256 mar keti ngBNB = newBal ance * marketingFee / bnbShare;
1135 sendBNB(payabl e(mar keti ng\Wal | et), narketi ngBNB) ;

1136 }

1137

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1139

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1138 i f(teanfFee > 0) {

1139 ui nt 256 teanBNB = newBal ance * teanfee / bnbShare;
1140 sendBNB(payabl e(teamial | et), teanBNB);

1141 }

1142

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1144

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1143 i f(validatorFee > 0) {

1144 ui nt 256 val i dat or BNB = newBal ance * val i dat or Fee / bnbShar e;
1145 sendBNB(payabl e(val i dat orWal | et), vali dator BNB);

1146 }

1147

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1149

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1148 i f (buyBackFee > 0) {

1149 buybackBNB += newBal ance * buyBackFee / bnbShar e;

1150

1151 i f (buybackBNB > buybackThreshol d && buybackEnabl ed && (price <= all Ti meHi gh *
(100 - pricelnpactPercent) / 100)){

1152 buyBackTokens(buybackBNB) ;

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1151

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1150

1151 i f (buybackBNB > buybackThreshol d && buybackEnabl ed && (price <= all Ti meHi gh *
(100 - pricelnpactPercent) / 100)){

1152 buyBackTokens(buybackBNB) ;

1153 buybackBNB = O0;

1154 }

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1158

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1157 i f(rewardsFee > 0) {

1158 ui nt 256 rewar dBNB = newBal ance * rewardsFee / bnbShare
1159 swapAndSendDi vi dends(r ewar dBNB)

1160 }

1161 }

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1183

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1182

1183 ui nt 256 price = getPriceOf Token(1l * 10 ** decimals());
1184

1185 if (price >= allTineH gh) {

1186 al | TineH gh = price;

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1191

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1190 _total Fees = total Fee;

1191 require (block.tinestanp - traded[from >= cooldown, "Wiit before selling.
Cool down enabl ed. ") ;

1192

1193 ui nt 256 price = getPriceO Token(1l * 10 ** decimals());

1194

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1193

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File

- ELC.sol

Locations

1192
1193
1194
1195

1196

(100 -

ui nt 256 price = getPriceOf Token(1l * 10 ** decimals());

i f (buybackBNB > buybackThreshol d && buybackEnabl ed && (price <= all Ti meHi gh *
pricel npact Percent) / 100)){
buyBackTokens(buybackBNB) ;

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1195

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1194

1195 i f (buybackBNB > buybackThreshol d && buybackEnabl ed && (price <= all Ti meHi gh *
(100 - pricelnpactPercent) / 100)){

1196 buyBackTokens(buybackBNB) ;

1197 buybackBNB = O0;

1198 }

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1202

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File

- ELC.sol

Locations
1201 }
1202 uint 256 fees = anbunt * _total Fees / 100;
1203

1204 anmopunt = amount - fees;
1205

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1204

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1203

1204 anmount = anmpunt - fees;

1205

1206 super. _transfer(from address(this), fees);
1207 }

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1269

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1268

1269 price = (uni swapV2Rout er. get Amount sQut (anmount, path))[path.length - 1];
1270 }

1271

1272 function set SmapTokensAt Anount (ui nt 256 newAnount) external onl yOaner{

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1273

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1272 function set SmapTokensAt Amount (ui nt 256 newAnount) external onl yOaner{

1273 requi re(newAmount > total Supply() / 100_000, "SwapTokensAt Amount mnust be greater
than 0.001% of total supply");

1274 swapTokensAt Anount = newAnount ;

1275 }

1276

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 199

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

198 uint index = map.indexX [key];

199 uint |astlndex = map. keys.length - 1;
200 address | ast Key = nmap. keys[| ast | ndex] ;
201

202 map. i ndexOF [| ast Key] = i ndex;

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1269

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- ELC.sol

Locations

1268

1269 price = (uni swapV2Rout er. get Amount sQut (anmount, path))[path.length - 1];
1270 }

1271

1272 function set SmapTokensAt Anount (ui nt 256 newAnount) external onl yOaner{

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION

CONTROL.
LINE 1218

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender” unless you really know what you are doing.

Source File
- ELC.sol

Locations

1217 try dividendTracker. process(gas) returns (uint256 iterations, uint256 clains,

ui nt 256 | ast Processedl ndex) {

1218 emt ProcessedDi videndTracker(iterations, clains, |astProcessedlndex, true, gas
tx.origin);

1219 }

1220 catch {

1221

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION

CONTROL.
LINE 1345

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender” unless you really know what you are doing.

Source File
- ELC.sol

Locations

1344 (uint256 iterations, uint256 clainms, uint256 |astProcessedl ndex) =

di vi dendTr acker . process(gas);

1345 emt ProcessedDi videndTracker(iterations, clains, |astProcessedlndex, false, gas
tx.origin);

1346 }

1347

1348 function claim) external ({

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 172

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

171 function get KeyAt| ndex(Map storage map, uint index) public viewreturns (address) {
172 return map. keys[index];

173}

174

175 function size(Map storage map) public view returns (uint) {

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 200

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

199 uint |astlndex = map. keys.length - 1;
200 address | astKey = map. keys[| ast | ndex] ;
201

202 map. i ndexOf [| ast Key] = i ndex;

203 del ete map. i ndexCOf [key] ;

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 205

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol
Locations
204
205 map. keys[i ndex] = | astKey;
206 map. keys. pop() ;
207 }
208 }

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 846

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File

- ELC.sol

Locations
845
846 address account = tokenHol der sMap. keys[_| ast Processedl ndex] ;
847

848 i f(canAut od ai m(| ast d ai mli nmes[account])) {
849 i f (processAccount (payabl e(account), true)) {

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1121

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

1120 address[] nenory path = new address[](2);

1121 pat h[0] = address(this);

1122 pat h[1] = uni swapV2Rout er. WETH() ;

1123

1124 uni swapV2Rout er . swapExact TokensFor ETHSupporti ngFeeOnTr ansf er Tokens(

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1122

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

1121 pat h[0] = address(this);

1122 pat h[1] = uni swapV2Rout er. WETH() ;

1123

1124 uni swapV2Rout er . swapExact TokensFor ETHSupporti ngFeeOnTr ansf er Tokens(
1125 contract TokenBal ance,

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1228

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

1227 address[] nenory path = new address[](2);

1228 pat h[0] = uni swapV2Rout er . WETH() ;

1229 pat h[1] = rewardToken;

1230

1231 uni swapV2Rout er . swapExact ETHFor TokensSupporti ngFeeOnTr ansf er Tokens{val ue: anount}(

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1229

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

1228 pat h[0] = uni swapV2Rout er . WETH() ;

1229 pat h[1] = rewardToken;

1230

1231 uni swapV2Rout er . swapExact ETHFor TokensSupporti ngFeeOnTr ansf er Tokens{val ue: amnount }(
1232 0,

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1249

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

1248 address[] nenory path = new address[](2);

1249 pat h[0] = uni swapV2Rout er . WETH() ;

1250 pat h[1] = address(this);

1251

1252 uni swapV2Rout er . swapExact ETHFor TokensSupporti ngFeeOnTr ansf er Tokens{val ue:
_anmount } (

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1250

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

1249 pat h[0] = uni swapV2Rout er . WETH() ;
1250 pat h[1] = address(this);

1251
1252 uni swapV2Rout er . swapExact ETHFor TokensSupporti ngFeeOnTr ansf er Tokens{ val ue:
_amount } (

1253 0,

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1266

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

1265 address[] nenory path = new address[](2);

1266 pat h{ 0] address(this);

1267 pat h[1] uni swapV2Rout er . WETH() ;

1268

1269 price = (uni swapV2Rout er. get Anbunt sCut (anount, path))[path.length - 1];

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1267

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol

Locations

1266 pat h[0]
1267 pat h[1]
1268

1269 price = (uni swapV2Rout er. get Amount sQut (anmount, path))[path.length - 1];
1270 }

address(this);
uni swapV2Rout er . WETH() ;

@S‘I"‘SH}I{ED Elancing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1269

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ELC.sol
Locations
1268
1269 price = (uni swapV2Rout er. get Amount sQut (anmount, path))[path.length - 1];
1270 }
1271
1272 function set SmapTokensAt Anount (ui nt 256 newAnount) external onl yOaner{

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@‘S‘I"‘SH}I{ED Elancing | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

