
TwitVi

Smart Contract
Audit Report

05 Feb 2023

TwitVi | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

TwitVi | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

TwitVi TWV Binance Smart Chain

| Addresses

Contract address 0x4392a96Fec68E162471793db631972ccAf80FE1C

Contract deployer address 0x8A0aEABF90Baa71df59114B60706e14E60E37A97

| Project Website

https://twitvi.com/

| Codebase

https://bscscan.com/address/0x4392a96Fec68E162471793db631972ccAf80FE1C#code

https://twitvi.com/
https://bscscan.com/address/0x4392a96Fec68E162471793db631972ccAf80FE1C#code

TwitVi | Security Analysis

SUMMARY

TwitVi is a Web3 social networking service with GameFi functionality. Users reserve NFTs featuring bird
designs; tweeting on Twitter using #TwitVi earns in-game tokens that can be used in-game or cashed in for
profit. twitVi encourages people from all over the world to interact with each other.

| Contract Summary

Documentation Quality

TwitVi provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by TwitVi with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 632, 654, 680, 797, 813, 835, 836, 849, 851, 866, 867, 899, 1023, 1023, 1028, 1032, 1033, 1178,
1178, 1180, 1180, 1183, 1207, 1209 and 1209.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1196 and 1197.

TwitVi | Security Analysis

CONCLUSION

We have audited the TwitVi project released on February 2023 to discover issues and identify potential security
vulnerabilities in TwitVi Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the TwitVi smart contract code do not pose a considerable risk. The writing of the contract
is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, weak sources of randomness,
tx.origin as a part of authorization control and out of bounds array access which the index access expression
can cause an exception in case of the use of an invalid array index value.

TwitVi | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

TwitVi | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

TwitVi | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

TwitVi | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Feb 04 2023 13:20:28 GMT+0000 (Coordinated Universal Time)

Finished Sunday Feb 05 2023 02:07:31 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File TwitVi.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 632

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

631) internal {

632 uint256 newAllowance = token.allowance(address(this), spender) + value;

633 _callOptionalReturn(

634 token,

635 abi.encodeWithSelector(

636

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 654

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

653);

654 uint256 newAllowance = oldAllowance - value;

655 _callOptionalReturn(

656 token,

657 abi.encodeWithSelector(

658

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 680

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

679 require(

680 nonceAfter == nonceBefore + 1,

681 "SafeERC20: permit did not succeed"

682);

683 }

684

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 797

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

796 address owner = _msgSender();

797 _approve(owner, spender, allowance(owner, spender) + addedValue);

798 return true;

799 }

800

801

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 813

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

812 unchecked {

813 _approve(owner, spender, currentAllowance - subtractedValue);

814 }

815

816 return true;

817

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 835

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

834 unchecked {

835 _balances[from] = fromBalance - amount;

836 _balances[to] += amount;

837 }

838

839

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 836

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

835 _balances[from] = fromBalance - amount;

836 _balances[to] += amount;

837 }

838

839 emit Transfer(from, to, amount);

840

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 849

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

848

849 _totalSupply += amount;

850 unchecked {

851 _balances[account] += amount;

852 }

853

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 851

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

850 unchecked {

851 _balances[account] += amount;

852 }

853 emit Transfer(address(0), account, amount);

854

855

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 866

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

865 unchecked {

866 _balances[account] = accountBalance - amount;

867 _totalSupply -= amount;

868 }

869

870

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 867

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

866 _balances[account] = accountBalance - amount;

867 _totalSupply -= amount;

868 }

869

870 emit Transfer(account, address(0), amount);

871

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 899

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

898 unchecked {

899 _approve(owner, spender, currentAllowance - amount);

900 }

901 }

902 }

903

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1023

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

1022 constructor() ERC20("TwitVi", "TWV") {

1023 _mint(owner(), 100_000_000 * (10**18));

1024

1025 taxDenominator = 100;

1026 buyTax = 0;

1027

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1023

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

1022 constructor() ERC20("TwitVi", "TWV") {

1023 _mint(owner(), 100_000_000 * (10**18));

1024

1025 taxDenominator = 100;

1026 buyTax = 0;

1027

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1028

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

1027 sellTax = 2;

1028 totalTax = buyTax + sellTax;

1029

1030 marketingWalletShares = 100;

1031

1032

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1032

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

1031

1032 setSwapTokensLimit = totalSupply() / 1_000_000; // 0.0001% of Total Supply

1033 swapTokensAtAmount = totalSupply() / 2000; // 0.05% of Total Supply

1034 isSwapBackEnabled = true;

1035

1036

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1033

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

1032 setSwapTokensLimit = totalSupply() / 1_000_000; // 0.0001% of Total Supply

1033 swapTokensAtAmount = totalSupply() / 2000; // 0.05% of Total Supply

1034 isSwapBackEnabled = true;

1035

1036 address router = getRouterAddress();

1037

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1178

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

1177 if (_isAutomatedMarketMakerPair[from]) {

1178 fees = (amount * buyTax) / taxDenominator;

1179 } else if (_isAutomatedMarketMakerPair[to]) {

1180 fees = (amount * sellTax) / taxDenominator;

1181 }

1182

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1178

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

1177 if (_isAutomatedMarketMakerPair[from]) {

1178 fees = (amount * buyTax) / taxDenominator;

1179 } else if (_isAutomatedMarketMakerPair[to]) {

1180 fees = (amount * sellTax) / taxDenominator;

1181 }

1182

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1180

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

1179 } else if (_isAutomatedMarketMakerPair[to]) {

1180 fees = (amount * sellTax) / taxDenominator;

1181 }

1182

1183 amount = amount - fees;

1184

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1180

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

1179 } else if (_isAutomatedMarketMakerPair[to]) {

1180 fees = (amount * sellTax) / taxDenominator;

1181 }

1182

1183 amount = amount - fees;

1184

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1183

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

1182

1183 amount = amount - fees;

1184

1185 super._transfer(from, address(this), fees);

1186 }

1187

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1207

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

1206

1207 uint256 newBalance = address(this).balance - initialBalance;

1208

1209 uint256 marketingShare = (newBalance * marketingWalletShares) / 100;

1210

1211

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1209

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

1208

1209 uint256 marketingShare = (newBalance * marketingWalletShares) / 100;

1210

1211 if (marketingShare > 0) {

1212 sendBNB(marketingWallet, marketingShare);

1213

TwitVi | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1209

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- TwitVi.sol

Locations

1208

1209 uint256 marketingShare = (newBalance * marketingWalletShares) / 100;

1210

1211 if (marketingShare > 0) {

1212 sendBNB(marketingWallet, marketingShare);

1213

TwitVi | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1196

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- TwitVi.sol

Locations

1195 address[] memory path = new address[](2);

1196 path[0] = address(this);

1197 path[1] = uniswapV2Router.WETH();

1198

1199 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

1200

TwitVi | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1197

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- TwitVi.sol

Locations

1196 path[0] = address(this);

1197 path[1] = uniswapV2Router.WETH();

1198

1199 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

1200 tokenAmount,

1201

TwitVi | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

TwitVi | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

