
Kodexa

Smart Contract
Audit Report

19 Dec 2021

Kodexa | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Kodexa | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Kodexa Kodexa Binance Smart Chain

| Addresses

Contract address 0xb007549db2a335364dfdce86001ee3b081051f03

Contract deployer address 0xC5a80c2F0BEe434362cdf3b97a19726DC7A98424

| Project Website

https://mosaicalpha.com/

| Codebase

https://bscscan.com/address/0xb007549db2a335364dfdce86001ee3b081051f03#code

https://mosaicalpha.com/
https://bscscan.com/address/0xb007549db2a335364dfdce86001ee3b081051f03#code

Kodexa | Security Analysis

SUMMARY

DeFi Solutions With Science and Fantasy We have designed our decentralized financial solutions to be as
comfortable to use as standard banking solutions are. With our easy-to-use platform and managed token
basket features, we are eager to open the world of crypto to everyone. To contribute to the increase of financial
awareness around the world, we are publishing educational content about the crypto world for every user level.
We have created a whole new level of asset management for professional crypto traders.

| Contract Summary

Documentation Quality

Kodexa provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Kodexa with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 937.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 567, 586, 608, 641, 643, 664, 665, 690, 692, 797, 865, 889, 1052, 1090, 1129, 1131, 1156, 1158,
1275, 1303, 1304, 1090, 1131, 1158, 1303 and 1304.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 8.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 935, 936, 1201, 1202, 866, 866, 890, 1053, 1130, 1131, 1131, 1157,
1158, 1158, 1276, 1277, 1277, 1278, 1303, 1303, 1304 and 1304.

Kodexa | Security Analysis

CONCLUSION

We have audited the Kodexa project released on January 2023 to discover issues and identify potential
security vulnerabilities in Kodexa Project. This process is used to find technical issues and security loopholes
which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The Kodexa smart contract code issues do not pose a considerable risk. The writing of the contract is close to
the standard of writing contracts in general. The low-risk issues are that a floating pragma is set, state variable
visibility is not set, public state variable with array type causing reachable exception by default, and out-of-
bounds array access. The current pragma Solidity directive is ""^0.8.0"". Specifying a fixed compiler version is
recommended to ensure that the bytecode produced does not vary between builds. This is especially important
if you rely on bytecode-level verification of the code. State variable visibility is not set, the best practice is to set
the visibility of state variables explicitly. The default visibility for "rolesMap" is internal. Other possible visibility
settings are public and private.

Kodexa | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Kodexa | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Kodexa | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Kodexa | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Dec 18 2021 03:12:25 GMT+0000 (Coordinated Universal Time)

Finished Sunday Dec 19 2021 05:29:48 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File KodexaToken.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110
PUBLIC STATE VARIABLE WITH ARRAY TYPE CAUSING REACHABLE
EXCEPTION BY DEFAULT.

low acknowledged

SWC-110
PUBLIC STATE VARIABLE WITH ARRAY TYPE CAUSING REACHABLE
EXCEPTION BY DEFAULT.

low acknowledged

SWC-110
PUBLIC STATE VARIABLE WITH ARRAY TYPE CAUSING REACHABLE
EXCEPTION BY DEFAULT.

low acknowledged

SWC-110
PUBLIC STATE VARIABLE WITH ARRAY TYPE CAUSING REACHABLE
EXCEPTION BY DEFAULT.

low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 567

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

566 unchecked {

567 _approve(sender, _msgSender(), currentAllowance - amount);

568 }

569

570 return true;

571

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 586

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

585 function increaseAllowance(address spender, uint256 addedValue) public virtual

returns (bool) {

586 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

587 return true;

588 }

589

590

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 608

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

607 unchecked {

608 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

609 }

610

611 return true;

612

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 641

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

640 unchecked {

641 _balances[sender] = senderBalance - amount;

642 }

643 _balances[recipient] += amount;

644

645

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 643

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

642 }

643 _balances[recipient] += amount;

644

645 emit Transfer(sender, recipient, amount);

646

647

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 664

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

663

664 _totalSupply += amount;

665 _balances[account] += amount;

666 emit Transfer(address(0), account, amount);

667

668

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 665

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

664 _totalSupply += amount;

665 _balances[account] += amount;

666 emit Transfer(address(0), account, amount);

667

668 _afterTokenTransfer(address(0), account, amount);

669

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 690

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

689 unchecked {

690 _balances[account] = accountBalance - amount;

691 }

692 _totalSupply -= amount;

693

694

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 692

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

691 }

692 _totalSupply -= amount;

693

694 emit Transfer(account, address(0), amount);

695

696

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 797

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

796 unchecked {

797 _approve(account, _msgSender(), currentAllowance - amount);

798 }

799 _burn(account, amount);

800 }

801

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 865

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

864 // query support of each interface in interfaceIds

865 for (uint256 i = 0; i < interfaceIds.length; i++) {

866 interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);

867 }

868 }

869

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 889

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

888 // query support of each interface in _interfaceIds

889 for (uint256 i = 0; i < interfaceIds.length; i++) {

890 if (!_supportsERC165Interface(account, interfaceIds[i])) {

891 return false;

892 }

893

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1052

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

1051 extRegistry = _extreg;

1052 for (uint i=0; i < _ownrs.length; i++)

1053 _addOwner(_ownrs[i]);

1054 }

1055

1056

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1090

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

1089 uint256 intmax;

1090 unchecked { intmax = uint256(0) - 1;}

1091 uint256 tmp = rolesMap[_address] & (intmax ^ (uint256(1) << _role));

1092

1093 if (tmp == 0) {

1094

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1129

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

1128 _unsetRole(_ownr, Roles.OWNER);

1129 for (uint i=0; i < owners.length; i++){

1130 if (owners[i] == _ownr) {

1131 owners[i] = owners[owners.length-1];

1132 owners.pop();

1133

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1131

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

1130 if (owners[i] == _ownr) {

1131 owners[i] = owners[owners.length-1];

1132 owners.pop();

1133 break;

1134 }

1135

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1156

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

1155 _unsetRole(_mgr, Roles.MANAGER);

1156 for (uint i=0; i < managers.length; i++){

1157 if (managers[i] == _mgr) {

1158 managers[i] = managers[managers.length-1];

1159 managers.pop();

1160

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1158

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

1157 if (managers[i] == _mgr) {

1158 managers[i] = managers[managers.length-1];

1159 managers.pop();

1160 break;

1161 }

1162

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1275

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

1274 if (contractWhitelist[_address]) return true;

1275 for (uint256 i = 0; i < secondaryWhitelistAddresses.length; i++) {

1276 if (secondaryWhitelistAddresses[i] != address(0)) {

1277 (bool success, bytes memory data) =

secondaryWhitelistAddresses[i].staticcall(abi.encodeWithSignature(secondaryWhitelistCallS

trings[i], _address));

1278 if (success == true && data[31] > 0) return true;

1279

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1303

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

1302 require(_idx < secondaryWhitelistAddresses.length);

1303 secondaryWhitelistAddresses[_idx] =

secondaryWhitelistAddresses[secondaryWhitelistAddresses.length - 1];

1304 secondaryWhitelistCallStrings[_idx] =

secondaryWhitelistCallStrings[secondaryWhitelistCallStrings.length - 1];

1305 secondaryWhitelistAddresses.pop();

1306 secondaryWhitelistCallStrings.pop();

1307

Kodexa | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1304

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

1303 secondaryWhitelistAddresses[_idx] =

secondaryWhitelistAddresses[secondaryWhitelistAddresses.length - 1];

1304 secondaryWhitelistCallStrings[_idx] =

secondaryWhitelistCallStrings[secondaryWhitelistCallStrings.length - 1];

1305 secondaryWhitelistAddresses.pop();

1306 secondaryWhitelistCallStrings.pop();

1307 }

1308

Kodexa | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1090

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

1089 uint256 intmax;

1090 unchecked { intmax = uint256(0) - 1;}

1091 uint256 tmp = rolesMap[_address] & (intmax ^ (uint256(1) << _role));

1092

1093 if (tmp == 0) {

1094

Kodexa | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1131

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

1130 if (owners[i] == _ownr) {

1131 owners[i] = owners[owners.length-1];

1132 owners.pop();

1133 break;

1134 }

1135

Kodexa | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1158

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

1157 if (managers[i] == _mgr) {

1158 managers[i] = managers[managers.length-1];

1159 managers.pop();

1160 break;

1161 }

1162

Kodexa | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1303

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

1302 require(_idx < secondaryWhitelistAddresses.length);

1303 secondaryWhitelistAddresses[_idx] =

secondaryWhitelistAddresses[secondaryWhitelistAddresses.length - 1];

1304 secondaryWhitelistCallStrings[_idx] =

secondaryWhitelistCallStrings[secondaryWhitelistCallStrings.length - 1];

1305 secondaryWhitelistAddresses.pop();

1306 secondaryWhitelistCallStrings.pop();

1307

Kodexa | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1304

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KodexaToken.sol

Locations

1303 secondaryWhitelistAddresses[_idx] =

secondaryWhitelistAddresses[secondaryWhitelistAddresses.length - 1];

1304 secondaryWhitelistCallStrings[_idx] =

secondaryWhitelistCallStrings[secondaryWhitelistCallStrings.length - 1];

1305 secondaryWhitelistAddresses.pop();

1306 secondaryWhitelistCallStrings.pop();

1307 }

1308

Kodexa | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 8

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- KodexaToken.sol

Locations

7

8 pragma solidity ^0.8.0;

9

10 /**

11 * @dev Provides information about the current execution context, including the

12

Kodexa | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 937

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "rolesMap" is internal.
Other possible visibility settings are public and private.

Source File
- KodexaToken.sol

Locations

936 address[] public owners;

937 mapping(address => uint256) rolesMap;

938 address public extRegistry;

939

940 function hasRole(address _address, uint8 _role) external view returns (bool) {

941

Kodexa | Security Analysis

SWC-110 | PUBLIC STATE VARIABLE WITH ARRAY TYPE
CAUSING REACHABLE EXCEPTION BY DEFAULT.
LINE 935

low SEVERITY
The public state variable "managers" in "OwnableManageableChainableRoles" contract has type "address[]"
and can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

934 contract OwnableManageableChainableRoles is IExternalOwnerManagerRegistry {

935 address[] public managers;

936 address[] public owners;

937 mapping(address => uint256) rolesMap;

938 address public extRegistry;

939

Kodexa | Security Analysis

SWC-110 | PUBLIC STATE VARIABLE WITH ARRAY TYPE
CAUSING REACHABLE EXCEPTION BY DEFAULT.
LINE 936

low SEVERITY
The public state variable "owners" in "OwnableManageableChainableRoles" contract has type "address[]" and
can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

935 address[] public managers;

936 address[] public owners;

937 mapping(address => uint256) rolesMap;

938 address public extRegistry;

939

940

Kodexa | Security Analysis

SWC-110 | PUBLIC STATE VARIABLE WITH ARRAY TYPE
CAUSING REACHABLE EXCEPTION BY DEFAULT.
LINE 1201

low SEVERITY
The public state variable "secondaryWhitelistAddresses" in "KodexaToken" contract has type "address[]" and
can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

1200 bool private _locked;

1201 address[] public secondaryWhitelistAddresses;

1202 string[] public secondaryWhitelistCallStrings;

1203

1204 constructor(

1205

Kodexa | Security Analysis

SWC-110 | PUBLIC STATE VARIABLE WITH ARRAY TYPE
CAUSING REACHABLE EXCEPTION BY DEFAULT.
LINE 1202

low SEVERITY
The public state variable "secondaryWhitelistCallStrings" in "KodexaToken" contract has type "string[]" and can
cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

1201 address[] public secondaryWhitelistAddresses;

1202 string[] public secondaryWhitelistCallStrings;

1203

1204 constructor(

1205 string memory name,

1206

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 866

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

865 for (uint256 i = 0; i < interfaceIds.length; i++) {

866 interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);

867 }

868 }

869

870

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 866

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

865 for (uint256 i = 0; i < interfaceIds.length; i++) {

866 interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);

867 }

868 }

869

870

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 890

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

889 for (uint256 i = 0; i < interfaceIds.length; i++) {

890 if (!_supportsERC165Interface(account, interfaceIds[i])) {

891 return false;

892 }

893 }

894

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1053

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

1052 for (uint i=0; i < _ownrs.length; i++)

1053 _addOwner(_ownrs[i]);

1054 }

1055

1056 event ExternalRegistryAddressChanged(address addr);

1057

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1130

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

1129 for (uint i=0; i < owners.length; i++){

1130 if (owners[i] == _ownr) {

1131 owners[i] = owners[owners.length-1];

1132 owners.pop();

1133 break;

1134

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1131

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

1130 if (owners[i] == _ownr) {

1131 owners[i] = owners[owners.length-1];

1132 owners.pop();

1133 break;

1134 }

1135

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1131

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

1130 if (owners[i] == _ownr) {

1131 owners[i] = owners[owners.length-1];

1132 owners.pop();

1133 break;

1134 }

1135

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1157

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

1156 for (uint i=0; i < managers.length; i++){

1157 if (managers[i] == _mgr) {

1158 managers[i] = managers[managers.length-1];

1159 managers.pop();

1160 break;

1161

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1158

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

1157 if (managers[i] == _mgr) {

1158 managers[i] = managers[managers.length-1];

1159 managers.pop();

1160 break;

1161 }

1162

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1158

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

1157 if (managers[i] == _mgr) {

1158 managers[i] = managers[managers.length-1];

1159 managers.pop();

1160 break;

1161 }

1162

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1276

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

1275 for (uint256 i = 0; i < secondaryWhitelistAddresses.length; i++) {

1276 if (secondaryWhitelistAddresses[i] != address(0)) {

1277 (bool success, bytes memory data) =

secondaryWhitelistAddresses[i].staticcall(abi.encodeWithSignature(secondaryWhitelistCallS

trings[i], _address));

1278 if (success == true && data[31] > 0) return true;

1279 }

1280

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1277

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

1276 if (secondaryWhitelistAddresses[i] != address(0)) {

1277 (bool success, bytes memory data) =

secondaryWhitelistAddresses[i].staticcall(abi.encodeWithSignature(secondaryWhitelistCallS

trings[i], _address));

1278 if (success == true && data[31] > 0) return true;

1279 }

1280 }

1281

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1277

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

1276 if (secondaryWhitelistAddresses[i] != address(0)) {

1277 (bool success, bytes memory data) =

secondaryWhitelistAddresses[i].staticcall(abi.encodeWithSignature(secondaryWhitelistCallS

trings[i], _address));

1278 if (success == true && data[31] > 0) return true;

1279 }

1280 }

1281

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1278

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

1277 (bool success, bytes memory data) =

secondaryWhitelistAddresses[i].staticcall(abi.encodeWithSignature(secondaryWhitelistCallS

trings[i], _address));

1278 if (success == true && data[31] > 0) return true;

1279 }

1280 }

1281 return false;

1282

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1303

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

1302 require(_idx < secondaryWhitelistAddresses.length);

1303 secondaryWhitelistAddresses[_idx] =

secondaryWhitelistAddresses[secondaryWhitelistAddresses.length - 1];

1304 secondaryWhitelistCallStrings[_idx] =

secondaryWhitelistCallStrings[secondaryWhitelistCallStrings.length - 1];

1305 secondaryWhitelistAddresses.pop();

1306 secondaryWhitelistCallStrings.pop();

1307

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1303

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

1302 require(_idx < secondaryWhitelistAddresses.length);

1303 secondaryWhitelistAddresses[_idx] =

secondaryWhitelistAddresses[secondaryWhitelistAddresses.length - 1];

1304 secondaryWhitelistCallStrings[_idx] =

secondaryWhitelistCallStrings[secondaryWhitelistCallStrings.length - 1];

1305 secondaryWhitelistAddresses.pop();

1306 secondaryWhitelistCallStrings.pop();

1307

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1304

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

1303 secondaryWhitelistAddresses[_idx] =

secondaryWhitelistAddresses[secondaryWhitelistAddresses.length - 1];

1304 secondaryWhitelistCallStrings[_idx] =

secondaryWhitelistCallStrings[secondaryWhitelistCallStrings.length - 1];

1305 secondaryWhitelistAddresses.pop();

1306 secondaryWhitelistCallStrings.pop();

1307 }

1308

Kodexa | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1304

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KodexaToken.sol

Locations

1303 secondaryWhitelistAddresses[_idx] =

secondaryWhitelistAddresses[secondaryWhitelistAddresses.length - 1];

1304 secondaryWhitelistCallStrings[_idx] =

secondaryWhitelistCallStrings[secondaryWhitelistCallStrings.length - 1];

1305 secondaryWhitelistAddresses.pop();

1306 secondaryWhitelistCallStrings.pop();

1307 }

1308

Kodexa | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Kodexa | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

