
Blue Brilliant AI

Smart Contract
Audit Report

25 Jan 2023

Blue Brilliant AI | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Blue Brilliant AI | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Blue Brilliant AI BRILL Binance Smart Chain

| Addresses

Contract address 0x7b99409F607857F4dbf1980Ab2C272d5369E4ad5

Contract deployer address 0x5AE11a1B6787CFdC7905c3A23cdee3aA78C80d3F

| Project Website

https://bluebrilliant.net/

| Codebase

https://bscscan.com/address/0x7b99409F607857F4dbf1980Ab2C272d5369E4ad5#code

https://bluebrilliant.net/
https://bscscan.com/address/0x7b99409F607857F4dbf1980Ab2C272d5369E4ad5#code

Blue Brilliant AI | Security Analysis

SUMMARY

Blue Brilliant AI is creating an innovative p2e platform with absolutely unique features. P2E, In-game NFT store,
Staking, Crypto Casino. Working on a game with the integration of artificial intelligence! Buyback mechanism
for price support! Buy/Sell tax: 6%! No Private Sale! 0% Team Tokens!

| Contract Summary

Documentation Quality

Blue Brilliant AI provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Blue Brilliant AI with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 195, 217, 242, 271, 272, 401, 402, 403, 404, 441, 472, 482, 493, 517, 528, 533, 546, 555, 563, 574,
581, 585, 605, 606, 608, 614, 615, 616, 623, 628, 633, 682, 692, 702, 734, 744, 753, 754 and 755.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 8.
SWC-110 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new REVERT
opcode in the EVM on lines 644, 645 and 745.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 546 and 709.

Blue Brilliant AI | Security Analysis

CONCLUSION

We have audited the Blue Brilliant AI project which has released on January 2023 to discover issues and
identify potential security vulnerabilities in Blue Brilliant AI Project. This process is used to find technical issues
and security loopholes that find some common issues in the code.

The security audit report produced satisfactory results with low-risk issues.

The most common issue found in writing code on contracts that do not pose a big risk, writing on contracts is
close to the standard of writing contracts in general. The low-level issues found are some arithmetic operation
issues, a floating pragma is set, weak sources of randomness and out of bounds array access which the index
access expression can cause an exception in case of use of an invalid array index value.

Blue Brilliant AI | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Blue Brilliant AI | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Blue Brilliant AI | Security Analysis

SMART CONTRACT ANALYSIS

Started Tuesday Jan 24 2023 20:57:39 GMT+0000 (Coordinated Universal Time)

Finished Wednesday Jan 25 2023 03:51:46 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File BlueBrilliantAI.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 195

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

194 require(currentAllowance >= amount, "BEP20: transfer amount exceeds allowance");

195 _approve(sender, _msgSender(), currentAllowance - amount);

196

197 return true;

198 }

199

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 217

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

216 {

217 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

218 return true;

219 }

220

221

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 242

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

241 require(currentAllowance >= subtractedValue, "BEP20: decreased allowance below

zero");

242 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

243

244 return true;

245 }

246

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 271

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

270 require(senderBalance >= amount, "BEP20: transfer amount exceeds balance");

271 _balances[sender] = senderBalance - amount;

272 _balances[recipient] += amount;

273

274 emit Transfer(sender, recipient, amount);

275

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 272

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

271 _balances[sender] = senderBalance - amount;

272 _balances[recipient] += amount;

273

274 emit Transfer(sender, recipient, amount);

275 }

276

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 401

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

400

401 uint256 public tokenLiquidityThreshold = 1e5 * 10**18;

402 uint256 public maxBuyLimit = 1e8 * 10**18;

403 uint256 public maxSellLimit = 1e8 * 10**18;

404 uint256 public maxWalletLimit = 1e8 * 10**18;

405

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 402

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

401 uint256 public tokenLiquidityThreshold = 1e5 * 10**18;

402 uint256 public maxBuyLimit = 1e8 * 10**18;

403 uint256 public maxSellLimit = 1e8 * 10**18;

404 uint256 public maxWalletLimit = 1e8 * 10**18;

405

406

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 403

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

402 uint256 public maxBuyLimit = 1e8 * 10**18;

403 uint256 public maxSellLimit = 1e8 * 10**18;

404 uint256 public maxWalletLimit = 1e8 * 10**18;

405

406 uint256 public genesis_block;

407

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 404

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

403 uint256 public maxSellLimit = 1e8 * 10**18;

404 uint256 public maxWalletLimit = 1e8 * 10**18;

405

406 uint256 public genesis_block;

407 uint256 private deadline = 3;

408

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 441

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

440 constructor() BEP20("Blue Brilliant AI", "BRILL") {

441 _tokengeneration(msg.sender, 1e8 * 10**decimals());

442 exemptFee[msg.sender] = true;

443

444 IRouter _router = IRouter(0x10ED43C718714eb63d5aA57B78B54704E256024E);

445

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 472

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

471 require(currentAllowance >= amount, "BEP20: transfer amount exceeds allowance");

472 _approve(sender, _msgSender(), currentAllowance - amount);

473

474 return true;

475 }

476

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 482

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

481 {

482 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

483 return true;

484 }

485

486

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 493

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

492 require(currentAllowance >= subtractedValue, "BEP20: decreased allowance below

zero");

493 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

494

495 return true;

496 }

497

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 517

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

516 require(

517 balanceOf(recipient) + amount <= maxWalletLimit,

518 "You are exceeding maxWalletLimit"

519);

520 }

521

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 528

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

527 require(

528 balanceOf(recipient) + amount <= maxWalletLimit,

529 "You are exceeding maxWalletLimit"

530);

531 }

532

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 533

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

532 if (coolDownEnabled) {

533 uint256 timePassed = block.timestamp - _lastSell[sender];

534 require(timePassed >= coolDownTime, "Cooldown enabled");

535 _lastSell[sender] = block.timestamp;

536 }

537

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 546

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

545 !exemptFee[recipient] &&

546 block.number < genesis_block + deadline;

547

548 //set fee to zero if fees in contract are handled or exempted

549 if (_interlock || exemptFee[sender] || exemptFee[recipient])

550

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 555

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

554 feeswap =

555 sellTaxes.liquidity +

556 sellTaxes.marketing +

557 sellTaxes.bb +

558 sellTaxes.dev;

559

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 563

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

562 feeswap =

563 taxes.liquidity +

564 taxes.marketing +

565 taxes.bb +

566 taxes.dev ;

567

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 574

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

573

574 fee = (amount * feesum) / 100;

575

576 //send fees if threshold has been reached

577 //don't do this on buys, breaks swap

578

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 581

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

580 //rest to recipient

581 super._transfer(sender, recipient, amount - fee);

582 if (fee > 0) {

583 //send the fee to the contract

584 if (feeswap > 0) {

585

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 585

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

584 if (feeswap > 0) {

585 uint256 feeAmount = (amount * feeswap) / 100;

586 super._transfer(sender, address(this), feeAmount);

587 }

588

589

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 605

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

604 // Split the contract balance into halves

605 uint256 denominator = feeswap * 2;

606 uint256 tokensToAddLiquidityWith = (contractBalance * swapTaxes.liquidity) /

607 denominator;

608 uint256 toSwap = contractBalance - tokensToAddLiquidityWith;

609

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 606

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

605 uint256 denominator = feeswap * 2;

606 uint256 tokensToAddLiquidityWith = (contractBalance * swapTaxes.liquidity) /

607 denominator;

608 uint256 toSwap = contractBalance - tokensToAddLiquidityWith;

609

610

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 608

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

607 denominator;

608 uint256 toSwap = contractBalance - tokensToAddLiquidityWith;

609

610 uint256 initialBalance = address(this).balance;

611

612

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 614

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

613

614 uint256 deltaBalance = address(this).balance - initialBalance;

615 uint256 unitBalance = deltaBalance / (denominator - swapTaxes.liquidity);

616 uint256 ethToAddLiquidityWith = unitBalance * swapTaxes.liquidity;

617

618

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 615

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

614 uint256 deltaBalance = address(this).balance - initialBalance;

615 uint256 unitBalance = deltaBalance / (denominator - swapTaxes.liquidity);

616 uint256 ethToAddLiquidityWith = unitBalance * swapTaxes.liquidity;

617

618 if (ethToAddLiquidityWith > 0) {

619

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 616

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

615 uint256 unitBalance = deltaBalance / (denominator - swapTaxes.liquidity);

616 uint256 ethToAddLiquidityWith = unitBalance * swapTaxes.liquidity;

617

618 if (ethToAddLiquidityWith > 0) {

619 // Add liquidity to pancake

620

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 623

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

622

623 uint256 marketingAmt = unitBalance * 2 * swapTaxes.marketing;

624 if (marketingAmt > 0) {

625 payable(marketingWallet).sendValue(marketingAmt);

626 }

627

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 628

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

627

628 uint256 bbAmt = unitBalance * 2 * swapTaxes.bb;

629 if (bbAmt > 0) {

630 payable(bbWallet).sendValue(bbAmt);

631 }

632

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 633

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

632

633 uint256 devAmt = unitBalance * 2 * swapTaxes.dev;

634 if (devAmt > 0) {

635 payable(devWallet).sendValue(devAmt);

636 }

637

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 682

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

681 require(new_amount <= 1e6, "Swap threshold amount should be lower or equal to 1% of

tokens");

682 tokenLiquidityThreshold = new_amount * 10**decimals();

683 }

684

685 function SetBuyTaxes(

686

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 692

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

691 taxes = Taxes(_marketing, _liquidity, _bb, _dev);

692 require((_marketing + _liquidity + _bb + _dev) <= 10, "Must keep fees at 10% or

less");

693 }

694

695 function SetSellTaxes(

696

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 702

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

701 sellTaxes = Taxes(_marketing, _liquidity, _bb, _dev);

702 require((_marketing + _liquidity + _bb + _dev) <= 14, "Must keep fees at 14% or

less");

703 }

704

705 function EnableTrading() external onlyOwner {

706

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 734

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

733 function updateCooldown(bool state, uint256 time) external onlyOwner {

734 coolDownTime = time * 1 seconds;

735 coolDownEnabled = state;

736 require(time <= 300, "cooldown timer cannot exceed 5 minutes");

737 }

738

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 744

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

743 function bulkExemptFee(address[] memory accounts, bool state) external onlyOwner {

744 for (uint256 i = 0; i < accounts.length; i++) {

745 exemptFee[accounts[i]] = state;

746 }

747 }

748

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 753

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

752 require(maxWallet >= 1e6, "Cannot set max wallet amount lower than 1%");

753 maxBuyLimit = maxBuy * 10**decimals();

754 maxSellLimit = maxSell * 10**decimals();

755 maxWalletLimit = maxWallet * 10**decimals();

756 }

757

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 754

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

753 maxBuyLimit = maxBuy * 10**decimals();

754 maxSellLimit = maxSell * 10**decimals();

755 maxWalletLimit = maxWallet * 10**decimals();

756 }

757

758

Blue Brilliant AI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 755

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BlueBrilliantAI.sol

Locations

754 maxSellLimit = maxSell * 10**decimals();

755 maxWalletLimit = maxWallet * 10**decimals();

756 }

757

758 function rescueBNB(uint256 weiAmount) external onlyOwner {

759

Blue Brilliant AI | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 8

low SEVERITY
The current pragma Solidity directive is ""^0.8.8"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BlueBrilliantAI.sol

Locations

7

8 pragma solidity ^0.8.8;

9

10 abstract contract Context {

11 function _msgSender() internal view virtual returns (address) {

12

Blue Brilliant AI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 644

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BlueBrilliantAI.sol

Locations

643 address[] memory path = new address[](2);

644 path[0] = address(this);

645 path[1] = router.WETH();

646

647 _approve(address(this), address(router), tokenAmount);

648

Blue Brilliant AI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 645

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BlueBrilliantAI.sol

Locations

644 path[0] = address(this);

645 path[1] = router.WETH();

646

647 _approve(address(this), address(router), tokenAmount);

648

649

Blue Brilliant AI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 745

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BlueBrilliantAI.sol

Locations

744 for (uint256 i = 0; i < accounts.length; i++) {

745 exemptFee[accounts[i]] = state;

746 }

747 }

748

749

Blue Brilliant AI | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 546

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- BlueBrilliantAI.sol

Locations

545 !exemptFee[recipient] &&

546 block.number < genesis_block + deadline;

547

548 //set fee to zero if fees in contract are handled or exempted

549 if (_interlock || exemptFee[sender] || exemptFee[recipient])

Blue Brilliant AI | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 709

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- BlueBrilliantAI.sol

Locations

708 providingLiquidity = true;

709 genesis_block = block.number;

710 }

711

712 function updatedeadline(uint256 _deadline) external onlyOwner {

Blue Brilliant AI | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Blue Brilliant AI | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

