
SugarYield

Smart Contract
Audit Report

25 Jan 2023

SugarYield | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

SugarYield | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

SugarYield SUGAR Binance Smart Chain

| Addresses

Contract address 0x57528b45134f09F2e0069334a36A7e14AF74745F

Contract deployer address 0xcadbe33ec806a88059FEa4a0F098EAd3afe05c4E

| Project Website

https://sugaryield.com/

| Codebase

https://bscscan.com/address/0x57528b45134f09F2e0069334a36A7e14AF74745F#code

https://sugaryield.com/
https://bscscan.com/address/0x57528b45134f09F2e0069334a36A7e14AF74745F#code

SugarYield | Security Analysis

SUMMARY

SugarYield.com is a DeFi insurance protocol that allows third-party participants to speculate on the
performance of underlying pegged assets depending on their performance histories, including BUSD, DAI,USDT
and many other stable tokens.

| Contract Summary

Documentation Quality

SugarYield provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by SugarYield with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 128, 138, 146, 165, 167, 179, 180, 194, 196, 506, 507, 507, 552, 552, 552, 553, 553, 604, 611, 611,
658, 685, 685, 689, 690, 690, 690, 714, 714, 716, 727, 728, 743, 771, 773, 776, 776, 781, 781, 789, 815,
815, 853, 853, 857 and 857.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 733, 734, 761 and 762.

SugarYield | Security Analysis

CONCLUSION

We have audited the SugarYield project released on January 2023 to discover issues and identify potential
security vulnerabilities in SugarYield Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the SugarYield smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, and out of bounds array access which the index access expression can cause an exception
in case of the use of an invalid array index value.

SugarYield | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

SugarYield | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

SugarYield | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

SugarYield | Security Analysis

SMART CONTRACT ANALYSIS

Started Tuesday Jan 24 2023 06:54:38 GMT+0000 (Coordinated Universal Time)

Finished Wednesday Jan 25 2023 10:04:05 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File SugarYield.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 128

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

127 unchecked {

128 _approve(sender, _msgSender(), currentAllowance - amount);

129 }

130 }

131

132

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 138

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

137 function increaseAllowance(address spender, uint256 addedValue) public virtual

returns (bool) {

138 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

139 return true;

140 }

141

142

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 146

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

145 unchecked {

146 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

147 }

148

149 return true;

150

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 165

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

164 unchecked {

165 _balances[sender] = senderBalance - amount;

166 }

167 _balances[recipient] += amount;

168

169

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 167

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

166 }

167 _balances[recipient] += amount;

168

169 emit Transfer(sender, recipient, amount);

170

171

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 179

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

178

179 _totalSupply += amount;

180 _balances[account] += amount;

181 emit Transfer(address(0), account, amount);

182

183

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 180

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

179 _totalSupply += amount;

180 _balances[account] += amount;

181 emit Transfer(address(0), account, amount);

182

183 _afterTokenTransfer(address(0), account, amount);

184

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 194

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

193 unchecked {

194 _balances[account] = accountBalance - amount;

195 }

196 _totalSupply -= amount;

197

198

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 196

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

195 }

196 _totalSupply -= amount;

197

198 emit Transfer(account, address(0), amount);

199

200

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 506

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

505 {

506 require(_arg.buyFee_ + _arg.sellFee_ <= 25, "Total buy and sell fees cannot be more

than 25%");

507 require(_arg.marketingShare_ + _arg.liquidityShare_ + _arg.charityShare_ == 100,

"Total fee shares must be equal to 100");

508 require(_arg.maxTransactionRateBuy_ >= 1 && _arg.maxTransactionRateSell_ >= 1, "Max

transfer rates must be greater than 0.1%");

509 require(_arg.maxWalletLimitRate_ >= 10, "Max wallet limit rate must be greater than

1%");

510

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 507

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

506 require(_arg.buyFee_ + _arg.sellFee_ <= 25, "Total buy and sell fees cannot be more

than 25%");

507 require(_arg.marketingShare_ + _arg.liquidityShare_ + _arg.charityShare_ == 100,

"Total fee shares must be equal to 100");

508 require(_arg.maxTransactionRateBuy_ >= 1 && _arg.maxTransactionRateSell_ >= 1, "Max

transfer rates must be greater than 0.1%");

509 require(_arg.maxWalletLimitRate_ >= 10, "Max wallet limit rate must be greater than

1%");

510

511

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 507

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

506 require(_arg.buyFee_ + _arg.sellFee_ <= 25, "Total buy and sell fees cannot be more

than 25%");

507 require(_arg.marketingShare_ + _arg.liquidityShare_ + _arg.charityShare_ == 100,

"Total fee shares must be equal to 100");

508 require(_arg.maxTransactionRateBuy_ >= 1 && _arg.maxTransactionRateSell_ >= 1, "Max

transfer rates must be greater than 0.1%");

509 require(_arg.maxWalletLimitRate_ >= 10, "Max wallet limit rate must be greater than

1%");

510

511

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 552

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

551

552 swapTokensAtAmount = _arg.totalSupply_ * (10 ** 18) / 5000;

553 _mint(owner(), _arg.totalSupply_ * (10 ** 18));

554

555 emit TokenCreated(owner(), address(this), TokenClass.basicToken, 3);

556

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 552

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

551

552 swapTokensAtAmount = _arg.totalSupply_ * (10 ** 18) / 5000;

553 _mint(owner(), _arg.totalSupply_ * (10 ** 18));

554

555 emit TokenCreated(owner(), address(this), TokenClass.basicToken, 3);

556

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 552

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

551

552 swapTokensAtAmount = _arg.totalSupply_ * (10 ** 18) / 5000;

553 _mint(owner(), _arg.totalSupply_ * (10 ** 18));

554

555 emit TokenCreated(owner(), address(this), TokenClass.basicToken, 3);

556

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 553

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

552 swapTokensAtAmount = _arg.totalSupply_ * (10 ** 18) / 5000;

553 _mint(owner(), _arg.totalSupply_ * (10 ** 18));

554

555 emit TokenCreated(owner(), address(this), TokenClass.basicToken, 3);

556 }

557

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 553

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

552 swapTokensAtAmount = _arg.totalSupply_ * (10 ** 18) / 5000;

553 _mint(owner(), _arg.totalSupply_ * (10 ** 18));

554

555 emit TokenCreated(owner(), address(this), TokenClass.basicToken, 3);

556 }

557

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 604

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

603 function updateFees(uint256 _buyFee, uint256 _sellFee) external onlyOwner {

604 require(_buyFee + _sellFee <= 25, "Total buy and sell fees cannot be more than

25%");

605 buyFee = _buyFee;

606 sellFee = _sellFee;

607 emit FeesUpdated(buyFee, sellFee);

608

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 611

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

610 function updateFeeShares(uint256 _marketingFeeShare, uint256 _liquidityFeeShare,

uint256 _charityShare) external onlyOwner {

611 require(_marketingFeeShare + _liquidityFeeShare + _charityShare == 100, "Total fee

shares must be equal to 100");

612 marketingShare = _marketingFeeShare;

613 liquidityShare = _liquidityFeeShare;

614 charityShare = _charityShare;

615

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 611

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

610 function updateFeeShares(uint256 _marketingFeeShare, uint256 _liquidityFeeShare,

uint256 _charityShare) external onlyOwner {

611 require(_marketingFeeShare + _liquidityFeeShare + _charityShare == 100, "Total fee

shares must be equal to 100");

612 marketingShare = _marketingFeeShare;

613 liquidityShare = _liquidityFeeShare;

614 charityShare = _charityShare;

615

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 658

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

657 uint balance = balanceOf(to);

658 require(balance + amount <= maxWalletAmount(), "MaxWallet: Transfer amount exceeds

the maxWalletAmount");

659 }

660 }

661

662

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 685

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

684 if(liquidityShare > 0) {

685 uint256 liquidityTokens = contractTokenBalance * liquidityShare / 100;

686 swapAndLiquify(liquidityTokens);

687 }

688

689

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 685

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

684 if(liquidityShare > 0) {

685 uint256 liquidityTokens = contractTokenBalance * liquidityShare / 100;

686 swapAndLiquify(liquidityTokens);

687 }

688

689

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 689

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

688

689 if(marketingShare + charityShare > 0) {

690 uint256 feeTokens = (contractTokenBalance * (marketingShare + charityShare)) / 100;

691 swapAndSendFees(feeTokens);

692 }

693

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 690

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

689 if(marketingShare + charityShare > 0) {

690 uint256 feeTokens = (contractTokenBalance * (marketingShare + charityShare)) / 100;

691 swapAndSendFees(feeTokens);

692 }

693

694

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 690

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

689 if(marketingShare + charityShare > 0) {

690 uint256 feeTokens = (contractTokenBalance * (marketingShare + charityShare)) / 100;

691 swapAndSendFees(feeTokens);

692 }

693

694

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 690

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

689 if(marketingShare + charityShare > 0) {

690 uint256 feeTokens = (contractTokenBalance * (marketingShare + charityShare)) / 100;

691 swapAndSendFees(feeTokens);

692 }

693

694

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 714

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

713 }

714 uint256 fees = amount * _totalFees / 100;

715

716 amount = amount - fees;

717

718

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 714

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

713 }

714 uint256 fees = amount * _totalFees / 100;

715

716 amount = amount - fees;

717

718

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 716

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

715

716 amount = amount - fees;

717

718 super._transfer(from, address(this), fees);

719 }

720

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 727

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

726 function swapAndLiquify(uint256 tokens) private {

727 uint256 half = tokens / 2;

728 uint256 otherHalf = tokens - half;

729

730 uint256 initialBalance = address(this).balance;

731

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 728

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

727 uint256 half = tokens / 2;

728 uint256 otherHalf = tokens - half;

729

730 uint256 initialBalance = address(this).balance;

731

732

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 743

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

742

743 uint256 newBalance = address(this).balance - initialBalance;

744

745 uniswapV2Router.addLiquidityETH{value: newBalance}(

746 address(this),

747

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 771

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

770

771 uint256 newBalance = address(this).balance - initialBalance;

772

773 uint256 bnbShare = marketingShare + charityShare;

774

775

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 773

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

772

773 uint256 bnbShare = marketingShare + charityShare;

774

775 if(marketingShare > 0) {

776 uint256 marketingBnb = newBalance * marketingShare / bnbShare;

777

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 776

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

775 if(marketingShare > 0) {

776 uint256 marketingBnb = newBalance * marketingShare / bnbShare;

777 sendBNB(payable(marketingWallet), marketingBnb);

778 }

779

780

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 776

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

775 if(marketingShare > 0) {

776 uint256 marketingBnb = newBalance * marketingShare / bnbShare;

777 sendBNB(payable(marketingWallet), marketingBnb);

778 }

779

780

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 781

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

780 if(charityShare > 0) {

781 uint256 charityBnb = newBalance * charityShare / bnbShare;

782 sendBNB(payable(charityWallet), charityBnb);

783 }

784

785

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 781

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

780 if(charityShare > 0) {

781 uint256 charityBnb = newBalance * charityShare / bnbShare;

782 sendBNB(payable(charityWallet), charityBnb);

783 }

784

785

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 789

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

788 function setSwapTokensAtAmount(uint256 newAmount) external onlyOwner{

789 require(newAmount > totalSupply() / 100000, "SwapTokensAtAmount must be greater

than 0.001% of total supply");

790 swapTokensAtAmount = newAmount;

791 }

792

793

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 815

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

814 function maxWalletAmount() public view returns (uint256) {

815 return totalSupply() * maxWalletLimitRate / 1000;

816 }

817

818 function setMaxWalletRate_Denominator1000(uint256 _val) external onlyOwner

_maxWalletAvailable {

819

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 815

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

814 function maxWalletAmount() public view returns (uint256) {

815 return totalSupply() * maxWalletLimitRate / 1000;

816 }

817

818 function setMaxWalletRate_Denominator1000(uint256 _val) external onlyOwner

_maxWalletAvailable {

819

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 853

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

852 function maxTransferAmountBuy() public view returns (uint256) {

853 return totalSupply() * maxTransactionRateBuy / 1000;

854 }

855

856 function maxTransferAmountSell() public view returns (uint256) {

857

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 853

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

852 function maxTransferAmountBuy() public view returns (uint256) {

853 return totalSupply() * maxTransactionRateBuy / 1000;

854 }

855

856 function maxTransferAmountSell() public view returns (uint256) {

857

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 857

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

856 function maxTransferAmountSell() public view returns (uint256) {

857 return totalSupply() * maxTransactionRateSell / 1000;

858 }

859

860 function setMaxTransactionRates_Denominator1000(uint256 _maxTransactionRateBuy,

uint256 _maxTransactionRateSell) external onlyOwner _maxTransactionAvailable {

861

SugarYield | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 857

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SugarYield.sol

Locations

856 function maxTransferAmountSell() public view returns (uint256) {

857 return totalSupply() * maxTransactionRateSell / 1000;

858 }

859

860 function setMaxTransactionRates_Denominator1000(uint256 _maxTransactionRateBuy,

uint256 _maxTransactionRateSell) external onlyOwner _maxTransactionAvailable {

861

SugarYield | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 733

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SugarYield.sol

Locations

732 address[] memory path = new address[](2);

733 path[0] = address(this);

734 path[1] = uniswapV2Router.WETH();

735

736 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

737

SugarYield | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 734

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SugarYield.sol

Locations

733 path[0] = address(this);

734 path[1] = uniswapV2Router.WETH();

735

736 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

737 half,

738

SugarYield | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 761

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SugarYield.sol

Locations

760 address[] memory path = new address[](2);

761 path[0] = address(this);

762 path[1] = uniswapV2Router.WETH();

763

764 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

765

SugarYield | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 762

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SugarYield.sol

Locations

761 path[0] = address(this);

762 path[1] = uniswapV2Router.WETH();

763

764 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

765 tokenAmount,

766

SugarYield | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

SugarYield | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

