
AlpacaToken

Smart Contract
Audit Report

27 Feb 2021

AlpacaToken | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

AlpacaToken | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

AlpacaToken ALPACA Binance Smart Chain

| Addresses

Contract address 0x8f0528ce5ef7b51152a59745befdd91d97091d2f

Contract deployer address 0xC44f82b07Ab3E691F826951a6E335E1bC1bB0B51

| Project Website

https://www.alpacafinance.org/

| Codebase

https://bscscan.com/address/0x8f0528ce5ef7b51152a59745befdd91d97091d2f#code

https://www.alpacafinance.org/
https://bscscan.com/address/0x8f0528ce5ef7b51152a59745befdd91d97091d2f#code

AlpacaToken | Security Analysis

SUMMARY

Alpaca Finance is the largest lending protocol allowing leveraged yield farming on BNB Chain. It helps lenders
earn safe and stable yields, and offers borrowers undercollateralized loans for leveraged yield farming
positions, vastly multiplying their farming principals and resulting profits.‌ As an enabler for the entire DeFi
ecosystem, Alpaca amplifies the liquidity layer of integrated exchanges, improving their capital efficiency by
connecting LP borrowers and lenders. It's through this empowering function that Alpaca has become a
fundamental building block within DeFi, helping bring the power of finance to each and every person's
fingertips, and every alpaca's paw... Furthermore, alpacas are a virtuous breed. That’s why, we are a fair-launch
project with no pre-sale, no investor, and no pre-mine. So from the beginning, this has always been a product
built by the people, for the people.

| Contract Summary

Documentation Quality

AlpacaToken provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by AlpacaToken with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 103, 115, 128, 129, 140, 150, 164, 181, 196, 197, 215, 232, 250, 270, 290, 1134, 1146, 1165, 1166,
1175, 1177, 1177, 1177, 1184, 1209, 1217, 1232, 1233, 1236, 1243, 1477, 1519, 1146, 1165, 1166, 1175,
1184, 1209, 1217, 1232 and 1233.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1331, 1459, 1461, 1477, 1505, 1522, 1554, 1578, 1595, 1601 and
1601.

SWC-120 | It is recommended to use external sources of randomness via oracles on lines 1005, 1009,
1016, 1029, 1157, 1230, 1420, 1441, 1442, 1508, 1511, 1522, 1526, 1527, 1534, 1540 and 1551.

AlpacaToken | Security Analysis

CONCLUSION

We have audited the AlpacaToken project released on February 2021 to discover issues and identify potential
security vulnerabilities in AlpacaToken Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the AlpacaToken smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, public state variables with array type causing reachable exception by default, the potential
use of "block.number" as a source of randomness, and out-of-bounds array access which the index access
expression can cause an exception in case of the use of an invalid array index value. The environment variable
"block.number" looks like it might be used as a source of randomness. Note that the values of variables like
coinbase, gaslimit, block number, and timestamp are predictable and can be manipulated by a malicious
miner. Also, keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment
variables as sources of randomness and be aware that the use of these variables introduces a certain level of
trust into miners.

AlpacaToken | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

AlpacaToken | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

AlpacaToken | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

AlpacaToken | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Feb 26 2021 18:11:56 GMT+0000 (Coordinated Universal Time)

Finished Saturday Feb 27 2021 04:36:18 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File AlpacaToken.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-110
PUBLIC STATE VARIABLE WITH ARRAY TYPE CAUSING REACHABLE
EXCEPTION BY DEFAULT.

low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 103

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

102 function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {

103 uint256 c = a + b;

104 if (c < a) return (false, 0);

105 return (true, c);

106 }

107

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 115

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

114 if (b > a) return (false, 0);

115 return (true, a - b);

116 }

117

118 /**

119

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 128

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

127 if (a == 0) return (true, 0);

128 uint256 c = a * b;

129 if (c / a != b) return (false, 0);

130 return (true, c);

131 }

132

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 129

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

128 uint256 c = a * b;

129 if (c / a != b) return (false, 0);

130 return (true, c);

131 }

132

133

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 140

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

139 if (b == 0) return (false, 0);

140 return (true, a / b);

141 }

142

143 /**

144

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 150

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

149 if (b == 0) return (false, 0);

150 return (true, a % b);

151 }

152

153 /**

154

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 164

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

163 function add(uint256 a, uint256 b) internal pure returns (uint256) {

164 uint256 c = a + b;

165 require(c >= a, "SafeMath: addition overflow");

166 return c;

167 }

168

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 181

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

180 require(b <= a, "SafeMath: subtraction overflow");

181 return a - b;

182 }

183

184 /**

185

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 196

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

195 if (a == 0) return 0;

196 uint256 c = a * b;

197 require(c / a == b, "SafeMath: multiplication overflow");

198 return c;

199 }

200

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 197

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

196 uint256 c = a * b;

197 require(c / a == b, "SafeMath: multiplication overflow");

198 return c;

199 }

200

201

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 215

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

214 require(b > 0, "SafeMath: division by zero");

215 return a / b;

216 }

217

218 /**

219

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 232

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

231 require(b > 0, "SafeMath: modulo by zero");

232 return a % b;

233 }

234

235 /**

236

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 250

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

249 require(b <= a, errorMessage);

250 return a - b;

251 }

252

253 /**

254

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 270

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

269 require(b > 0, errorMessage);

270 return a / b;

271 }

272

273 /**

274

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 290

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

289 require(b > 0, errorMessage);

290 return a % b;

291 }

292 }

293

294

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1134

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1133 require(signatory != address(0), "ALPACA::delegateBySig: invalid signature");

1134 require(nonce == nonces[signatory]++, "ALPACA::delegateBySig: invalid nonce");

1135 require(now <= expiry, "ALPACA::delegateBySig: signature expired");

1136 return _delegate(signatory, delegatee);

1137 }

1138

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1146

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1145 uint32 nCheckpoints = numCheckpoints[account];

1146 return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;

1147 }

1148

1149 /**

1150

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1165

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1164 // First check most recent balance

1165 if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {

1166 return checkpoints[account][nCheckpoints - 1].votes;

1167 }

1168

1169

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1166

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1165 if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {

1166 return checkpoints[account][nCheckpoints - 1].votes;

1167 }

1168

1169 // Next check implicit zero balance

1170

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1175

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1174 uint32 lower = 0;

1175 uint32 upper = nCheckpoints - 1;

1176 while (upper > lower) {

1177 uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow

1178 Checkpoint memory cp = checkpoints[account][center];

1179

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1177

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1176 while (upper > lower) {

1177 uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow

1178 Checkpoint memory cp = checkpoints[account][center];

1179 if (cp.fromBlock == blockNumber) {

1180 return cp.votes;

1181

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1177

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1176 while (upper > lower) {

1177 uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow

1178 Checkpoint memory cp = checkpoints[account][center];

1179 if (cp.fromBlock == blockNumber) {

1180 return cp.votes;

1181

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1177

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1176 while (upper > lower) {

1177 uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow

1178 Checkpoint memory cp = checkpoints[account][center];

1179 if (cp.fromBlock == blockNumber) {

1180 return cp.votes;

1181

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1184

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1183 } else {

1184 upper = center - 1;

1185 }

1186 }

1187 return checkpoints[account][lower].votes;

1188

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1209

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1208 uint32 srcRepNum = numCheckpoints[srcRep];

1209 uint256 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;

1210 uint256 srcRepNew = srcRepOld.sub(amount);

1211 _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);

1212 }

1213

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1217

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1216 uint32 dstRepNum = numCheckpoints[dstRep];

1217 uint256 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;

1218 uint256 dstRepNew = dstRepOld.add(amount);

1219 _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);

1220 }

1221

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1232

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1231

1232 if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock ==

blockNumber) {

1233 checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;

1234 } else {

1235 checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);

1236

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1233

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1232 if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock ==

blockNumber) {

1233 checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;

1234 } else {

1235 checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);

1236 numCheckpoints[delegatee] = nCheckpoints + 1;

1237

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1236

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1235 checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);

1236 numCheckpoints[delegatee] = nCheckpoints + 1;

1237 }

1238

1239 emit DelegateVotesChanged(delegatee, oldVotes, newVotes);

1240

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1243

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1242 function safe32(uint256 n, string memory errorMessage) internal pure returns

(uint32) {

1243 require(n < 2**32, errorMessage);

1244 return uint32(n);

1245 }

1246

1247

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1477

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1476 uint256 alpacaReward =

multiplier.mul(alpacaPerBlock).mul(pool.allocPoint).div(totalAllocPoint);

1477 accAlpacaPerShare = accAlpacaPerShare.add(alpacaReward.mul(1e12).div(lpSupply));

1478 }

1479 return user.amount.mul(accAlpacaPerShare).div(1e12).sub(user.rewardDebt);

1480 }

1481

AlpacaToken | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1519

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1518

1519 // Deposit Staking tokens to FairLaunchToken for ALPACA allocation.

1520 function deposit(address _for, uint256 _pid, uint256 _amount) public override {

1521 PoolInfo storage pool = poolInfo[_pid];

1522 UserInfo storage user = userInfo[_pid][_for];

1523

AlpacaToken | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1146

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1145 uint32 nCheckpoints = numCheckpoints[account];

1146 return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;

1147 }

1148

1149 /**

1150

AlpacaToken | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1165

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1164 // First check most recent balance

1165 if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {

1166 return checkpoints[account][nCheckpoints - 1].votes;

1167 }

1168

1169

AlpacaToken | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1166

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1165 if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {

1166 return checkpoints[account][nCheckpoints - 1].votes;

1167 }

1168

1169 // Next check implicit zero balance

1170

AlpacaToken | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1175

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1174 uint32 lower = 0;

1175 uint32 upper = nCheckpoints - 1;

1176 while (upper > lower) {

1177 uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow

1178 Checkpoint memory cp = checkpoints[account][center];

1179

AlpacaToken | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1184

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1183 } else {

1184 upper = center - 1;

1185 }

1186 }

1187 return checkpoints[account][lower].votes;

1188

AlpacaToken | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1209

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1208 uint32 srcRepNum = numCheckpoints[srcRep];

1209 uint256 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;

1210 uint256 srcRepNew = srcRepOld.sub(amount);

1211 _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);

1212 }

1213

AlpacaToken | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1217

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1216 uint32 dstRepNum = numCheckpoints[dstRep];

1217 uint256 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;

1218 uint256 dstRepNew = dstRepOld.add(amount);

1219 _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);

1220 }

1221

AlpacaToken | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1232

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1231

1232 if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock ==

blockNumber) {

1233 checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;

1234 } else {

1235 checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);

1236

AlpacaToken | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1233

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AlpacaToken.sol

Locations

1232 if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock ==

blockNumber) {

1233 checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;

1234 } else {

1235 checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);

1236 numCheckpoints[delegatee] = nCheckpoints + 1;

1237

AlpacaToken | Security Analysis

SWC-110 | PUBLIC STATE VARIABLE WITH ARRAY TYPE
CAUSING REACHABLE EXCEPTION BY DEFAULT.
LINE 1331

low SEVERITY
The public state variable "poolInfo" in "FairLaunch" contract has type "struct FairLaunch.PoolInfo[]" and can
cause an exception in case of use of invalid array index value.

Source File
- AlpacaToken.sol

Locations

1330 // Info of each pool.

1331 PoolInfo[] public poolInfo;

1332 // Info of each user that stakes Staking tokens.

1333 mapping(uint256 => mapping(address => UserInfo)) public userInfo;

1334 // Total allocation poitns. Must be the sum of all allocation points in all pools.

1335

AlpacaToken | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1459

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AlpacaToken.sol

Locations

1458 if (_currentBlock <= bonusEndBlock) {

1459 return _currentBlock.sub(_lastRewardBlock).mul(bonusMultiplier);

1460 }

1461 if (_lastRewardBlock >= bonusEndBlock) {

1462 return _currentBlock.sub(_lastRewardBlock);

1463

AlpacaToken | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1461

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AlpacaToken.sol

Locations

1460 }

1461 if (_lastRewardBlock >= bonusEndBlock) {

1462 return _currentBlock.sub(_lastRewardBlock);

1463 }

1464 // This is the case where bonusEndBlock is in the middle of _lastRewardBlock and

_currentBlock block.

1465

AlpacaToken | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1477

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AlpacaToken.sol

Locations

1476 uint256 alpacaReward =

multiplier.mul(alpacaPerBlock).mul(pool.allocPoint).div(totalAllocPoint);

1477 accAlpacaPerShare = accAlpacaPerShare.add(alpacaReward.mul(1e12).div(lpSupply));

1478 }

1479 return user.amount.mul(accAlpacaPerShare).div(1e12).sub(user.rewardDebt);

1480 }

1481

AlpacaToken | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1505

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AlpacaToken.sol

Locations

1504 alpaca.mint(address(this), alpacaReward);

1505 pool.accAlpacaPerShare =

pool.accAlpacaPerShare.add(alpacaReward.mul(1e12).div(lpSupply));

1506 // update accAlpacaPerShareTilBonusEnd

1507 if (block.number <= bonusEndBlock) {

1508 alpaca.lock(devaddr, alpacaReward.div(10).mul(bonusLockUpBps).div(10000));

1509

AlpacaToken | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1522

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AlpacaToken.sol

Locations

1521 PoolInfo storage pool = poolInfo[_pid];

1522 UserInfo storage user = userInfo[_pid][_for];

1523 if (user.fundedBy != address(0)) require(user.fundedBy == msg.sender, "bad sof");

1524 require(pool.stakeToken != address(0), "deposit: not accept deposit");

1525 updatePool(_pid);

1526

AlpacaToken | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1554

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AlpacaToken.sol

Locations

1553 user.bonusDebt = user.amount.mul(pool.accAlpacaPerShareTilBonusEnd).div(1e12);

1554 if (pool.stakeToken != address(0)) {

1555 IERC20(pool.stakeToken).safeTransfer(address(msg.sender), _amount);

1556 }

1557 emit Withdraw(msg.sender, _pid, user.amount);

1558

AlpacaToken | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1578

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AlpacaToken.sol

Locations

1577 safeAlpacaTransfer(_to, pending);

1578 alpaca.lock(_to, bonus.mul(bonusLockUpBps).div(10000));

1579 }

1580

1581 // Withdraw without caring about rewards. EMERGENCY ONLY.

1582

AlpacaToken | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1595

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AlpacaToken.sol

Locations

1594 if (_amount > alpacaBal) {

1595 alpaca.transfer(_to, alpacaBal);

1596 } else {

1597 alpaca.transfer(_to, _amount);

1598 }

1599

AlpacaToken | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1601

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AlpacaToken.sol

Locations

1600

1601 }

1602

AlpacaToken | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1601

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AlpacaToken.sol

Locations

1600

1601 }

1602

AlpacaToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1005

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- AlpacaToken.sol

Locations

1004 // When block number less than startReleaseBlock, no ALPACAs can be unlocked

1005 if (block.number < startReleaseBlock) {

1006 return 0;

1007 }

1008 // When block number more than endReleaseBlock, all locked ALPACAs can be unlocked

1009

AlpacaToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1009

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- AlpacaToken.sol

Locations

1008 // When block number more than endReleaseBlock, all locked ALPACAs can be unlocked

1009 else if (block.number >= endReleaseBlock) {

1010 return _locks[_account];

1011 }

1012 // When block number is more than startReleaseBlock but less than endReleaseBlock,

1013

AlpacaToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1016

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- AlpacaToken.sol

Locations

1015 {

1016 uint256 releasedBlock = block.number.sub(_lastUnlockBlock[_account]);

1017 uint256 blockLeft = endReleaseBlock.sub(_lastUnlockBlock[_account]);

1018 return _locks[_account].mul(releasedBlock).div(blockLeft);

1019 }

1020

AlpacaToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1029

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- AlpacaToken.sol

Locations

1028 _locks[msg.sender] = _locks[msg.sender].sub(amount);

1029 _lastUnlockBlock[msg.sender] = block.number;

1030 _totalLock = _totalLock.sub(amount);

1031 }

1032

1033

AlpacaToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1157

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- AlpacaToken.sol

Locations

1156 function getPriorVotes(address account, uint256 blockNumber) external view returns

(uint256) {

1157 require(blockNumber < block.number, "ALPACA::getPriorVotes: not yet determined");

1158

1159 uint32 nCheckpoints = numCheckpoints[account];

1160 if (nCheckpoints == 0) {

1161

AlpacaToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1230

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- AlpacaToken.sol

Locations

1229) internal {

1230 uint32 blockNumber = safe32(block.number, "ALPACA::_writeCheckpoint: block number

exceeds 32 bits");

1231

1232 if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock ==

blockNumber) {

1233 checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;

1234

AlpacaToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1420

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- AlpacaToken.sol

Locations

1419 function setPool(

1420 uint256 _pid,

1421 uint256 _allocPoint,

1422 bool _withUpdate

1423) public override onlyOwner {

1424

AlpacaToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1441

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- AlpacaToken.sol

Locations

1440 function isDuplicatedPool(address _stakeToken) public view returns (bool) {

1441 uint256 length = poolInfo.length;

1442 for (uint256 _pid = 0; _pid < length; _pid++) {

1443 if(poolInfo[_pid].stakeToken == _stakeToken) return true;

1444 }

1445

AlpacaToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1442

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- AlpacaToken.sol

Locations

1441 uint256 length = poolInfo.length;

1442 for (uint256 _pid = 0; _pid < length; _pid++) {

1443 if(poolInfo[_pid].stakeToken == _stakeToken) return true;

1444 }

1445 return false;

1446

AlpacaToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1508

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- AlpacaToken.sol

Locations

1507 if (block.number <= bonusEndBlock) {

1508 alpaca.lock(devaddr, alpacaReward.div(10).mul(bonusLockUpBps).div(10000));

1509 pool.accAlpacaPerShareTilBonusEnd = pool.accAlpacaPerShare;

1510 }

1511 if(block.number > bonusEndBlock && pool.lastRewardBlock < bonusEndBlock) {

1512

AlpacaToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1511

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- AlpacaToken.sol

Locations

1510 }

1511 if(block.number > bonusEndBlock && pool.lastRewardBlock < bonusEndBlock) {

1512 uint256 alpacaBonusPortion =

bonusEndBlock.sub(pool.lastRewardBlock).mul(bonusMultiplier).mul(alpacaPerBlock).mul(pool

.allocPoint).div(totalAllocPoint);

1513 alpaca.lock(devaddr, alpacaBonusPortion.div(10).mul(bonusLockUpBps).div(10000));

1514 pool.accAlpacaPerShareTilBonusEnd =

pool.accAlpacaPerShareTilBonusEnd.add(alpacaBonusPortion.mul(1e12).div(lpSupply));

1515

AlpacaToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1522

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- AlpacaToken.sol

Locations

1521 PoolInfo storage pool = poolInfo[_pid];

1522 UserInfo storage user = userInfo[_pid][_for];

1523 if (user.fundedBy != address(0)) require(user.fundedBy == msg.sender, "bad sof");

1524 require(pool.stakeToken != address(0), "deposit: not accept deposit");

1525 updatePool(_pid);

1526

AlpacaToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1526

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- AlpacaToken.sol

Locations

1525 updatePool(_pid);

1526 if (user.amount > 0) _harvest(_for, _pid);

1527 if (user.fundedBy == address(0)) user.fundedBy = msg.sender;

1528 IERC20(pool.stakeToken).safeTransferFrom(address(msg.sender), address(this),

_amount);

1529 user.amount = user.amount.add(_amount);

1530

AlpacaToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1527

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- AlpacaToken.sol

Locations

1526 if (user.amount > 0) _harvest(_for, _pid);

1527 if (user.fundedBy == address(0)) user.fundedBy = msg.sender;

1528 IERC20(pool.stakeToken).safeTransferFrom(address(msg.sender), address(this),

_amount);

1529 user.amount = user.amount.add(_amount);

1530 user.rewardDebt = user.amount.mul(pool.accAlpacaPerShare).div(1e12);

1531

AlpacaToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1534

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- AlpacaToken.sol

Locations

1533 }

1534

1535 // Withdraw Staking tokens from FairLaunchToken.

1536 function withdraw(address _for, uint256 _pid, uint256 _amount) public override {

1537 _withdraw(_for, _pid, _amount);

1538

AlpacaToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1540

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- AlpacaToken.sol

Locations

1539

1540 function withdrawAll(address _for, uint256 _pid) public override {

1541 _withdraw(_for, _pid, userInfo[_pid][_for].amount);

1542 }

1543

1544

AlpacaToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1551

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- AlpacaToken.sol

Locations

1550 _harvest(_for, _pid);

1551 user.amount = user.amount.sub(_amount);

1552 user.rewardDebt = user.amount.mul(pool.accAlpacaPerShare).div(1e12);

1553 user.bonusDebt = user.amount.mul(pool.accAlpacaPerShareTilBonusEnd).div(1e12);

1554 if (pool.stakeToken != address(0)) {

1555

AlpacaToken | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

AlpacaToken | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

