oty
<CSL)
v

AMAUROT

Smart Contract
Audit Report

@ SYSFIXED 21 Oct 2022

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

AMAUROQOT | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

AMAUROQOT | Security Analysis

Project name

Token ticker

Blockchain

AMAUROT

AMA

Binance Smart Chain

| Addresses

Contract address

0xe9cd2668fb580c96b035b6d081e5753f23fe7f46

Contract deployer address

0x94fD3817270F368D563D477B917F5769eABbBd97

| Project Website

https://www.meta-utopia.io/

| Codebase

https://bscscan.com/address/0xe9cd2668fb580c96b035b6d081e5753f23fe7f464#code

https://www.meta-utopia.io/
https://bscscan.com/address/0xe9cd2668fb580c96b035b6d081e5753f23fe7f46#code

@S‘I"‘SH}I{ED AMAUROT | Security Analysis

SUMMARY

Meta-Utopia is a MetaFi project driven by community consensus to build an ideal world, an Utopia in the
Metaverse. Land Cultivation and population growth paved the way for Meta Utopia, which now opens its doors
to the "Era of Building and Development" in the capital city - Amaurot - the bridge for real-world businesses to
enter the metaverse. The target of the Meta-Utopia is to realize a sustainable virtual ecosystem and create a
peaceful environment for all its citizens.

| Contract Summary

Documentation Quality
AMAUROT provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

e Standard solidity basecode and rules are already followed by AMAUROT with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 379.

e SWC-107 | It is recommended to use a reentrancy lock, reentrancy weaknesses detected on lines 620,
620, 624, 624, 515 and 690.

e SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 403.

@ SYSFIXED AMAURQOT | Security Analysis

CONCLUSION

We have audited the AMAUROT project released on October 2022 to discover issues and identify potential
security vulnerabilities in AMAUROT Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the AMAUROT smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some
Read/write of persistent states following the external calls, state variable visibility not set, and requirement
violation. The contract account state is accessed after an external call. To prevent reentrancy issues, consider
accessing the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can
be used to prevent untrusted callees from re-entering the contract in an intermediate state. A requirement was
violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested
call (for instance, via passed arguments).

£ SYSFIXED

AUDIT RESULT

AMAUROQOT | Security Analysis

Untrusted Callee

addresses.

Article Category Description Result
Functions and state variables visibility should be
- SWC-100 - . - ISSUE
Default Visibility set explicitly. Visibility levels should be specified
SWC-108 . FOUND
consciously.
Integer Overflow If unchecked math is used, all math operations
SWC-101 PASS
and Underflow should be safe from overflows and underflows.
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same
Floating Pragma SWC-103 compiler version and flags that they have been PASS
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 . i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.
Check effect interaction pattern should be followed ISSUE
Reentrancy SWC-107))
if the code performs recursive call. FOUND
Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a ISSUE
Assert Violation N
SWC-123 failing assert statement. FOUND
Deprecated Solidity o)
. SWC-111 Deprecated built-in functions should never be used. PASS
Functions
Delegate call to Delegatecalls should only be allowed to trusted
SWC-112 PASS

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

AMAUROQOT | Security Analysis

Execution of the code should never be blocked by a specific
contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only once
during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

Typographical
Error

Override control
character

Unused variables

Unexpected Ether
balance

Hash Collisions
Variable

Hardcoded gas
amount

Unencrypted
Private Data

SWC-129

SWC-130

SWC-131
SWC-135

SWC-132

SWC-133

SWC-134

SWC-136

AMAUROQOT | Security Analysis

A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

Contracts can behave erroneously when they strictly assume
a specific Ether balance.

Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

The transfer() and send() functions forward a fixed amount
of 2300 gas.

It is a common misconception that private type variables
cannot be read.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

@ SYSFIXED AMAUROQOT | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Oct 20 2022 19:55:14 GMT+0000 (Coordinated Universal Time)
Finished Friday Oct 21 2022 00:55:03 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File AMAUROT.sol

| Detected Issues

ID Title Severity | Status

SWC-107 | READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged
SWC-107 | WRITE TO PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged
SWC-107 | READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged
SWC-107 | WRITE TO PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged
SWC-107 | READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged
SWC-107 | WRITE TO PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged
SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-123 | REQUIREMENT VIOLATION. low acknowledged

@ SYSFIXED AMAUROT | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING

EXTERNAL CALL.
LINE 620

low SEVERITY

The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File

- AMAUROT.sol

Locations
619
620 _bal ances[sender] = _bal ances[sender]. sub(
621 anount ,
622 ' BEP20: transfer anpunt exceeds bal ance'
623);
624

@ SYSFIXED AMAUROT | Security Analysis

SWC-107 | WRITE TO PERSISTENT STATE FOLLOWING

EXTERNAL CALL.
LINE 620

low SEVERITY

The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File

- AMAUROT.sol

Locations
619
620 _bal ances[sender] = _bal ances[sender]. sub(
621 anount ,
622 ' BEP20: transfer anpunt exceeds bal ance'
623);
624

@ SYSFIXED AMAUROT | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING

EXTERNAL CALL.
LINE 624

low SEVERITY

The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- AMAUROT.sol
Locations
623);
624 _bal ances[reci pient] = _bal ances|[recipient].add(anount);
625 emt Transfer(sender, recipient, anmount);
626 }
627
628

@ SYSFIXED AMAUROT | Security Analysis

SWC-107 | WRITE TO PERSISTENT STATE FOLLOWING

EXTERNAL CALL.
LINE 624

low SEVERITY

The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- AMAUROT.sol
Locations
623);
624 _bal ances[reci pient] = _bal ances|[recipient].add(anount);
625 emt Transfer(sender, recipient, anmount);
626 }
627
628

@ SYSFIXED AMAUROT | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING

EXTERNAL CALL.
LINE 515

low SEVERITY

The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- AMAUROT.sol

Locations

514 _nsgSender (),

515 _al |l omances[sender][_nsgSender ()] . sub(

516 anount ,

517 ' BEP20: transfer anpbunt exceeds al |l owance'
518)

519

@ SYSFIXED AMAUROT | Security Analysis

SWC-107 | WRITE TO PERSISTENT STATE FOLLOWING

EXTERNAL CALL.
LINE 690

low SEVERITY

The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File

- AMAUROT.sol

Locations
689
690 _al |l onances[owner][spender] = anount;
691 em t Approval (owner, spender, anount);
692 }
693
694

@ SYSFIXED AMAUROT | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 379

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "_Operator" is internal.
Other possible visibility settings are public and private.

Source File
- AMAUROT.sol

Locations

378 string public _nane;
379 address _Operator;

380
381 nodi fier onlyQperator() {
382 requi re(nsg. sender == _Operator, 'Perm ssion denied);

383

@ SYSFIXED AMAUROQOT | Security Analysis

SWC-123 | REQUIREMENT VIOLATION.
LINE 403

low SEVERITY
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments).

Source File
- AMAUROT.sol

Locations

402 if (!antisnipeD sable && address(antisnipe) != address(0))
403 anti sni pe. assur eCanTr ansf er (nsg. sender, from to, anount);
404 }

405

406 function setAntisni peDi sabl e() external onlyOaner {

407

@ SYSFIXED AMAUROT | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@ SYSFIXED AMAUROT | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

