
KoaCombat

Smart Contract
Audit Report

19 Feb 2022

KoaCombat | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

KoaCombat | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

KoaCombat KoaCombat Ethereum

| Addresses

Contract address 0x6769D86f9C430f5AC6d9c861a0173613F1C5544C

Contract deployer address 0xD86f63fCA24adb614f25Faf6D88f9202b4AC7c54

| Project Website

https://koacombat.com/

| Codebase

https://etherscan.io/address/0x6769D86f9C430f5AC6d9c861a0173613F1C5544C#code

https://koacombat.com/
https://etherscan.io/address/0x6769D86f9C430f5AC6d9c861a0173613F1C5544C#code

KoaCombat | Security Analysis

SUMMARY

KOA COMBAT LLC leads the crypto industry with its best-in-class tokenomics, renowned cryptologists
development team, 60+ years combined professional management team, top co-sponsorships, state of the art
fighter NFTs, first of its kind P2E gaming platform, LIVE PPV event, staking, betting, streaming, extensive
charitable giving and much more.

| Contract Summary

Documentation Quality

KoaCombat provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by KoaCombat with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 119, 119, 120, 120, 123, 123, 124, 124, 244, 250, 257, 280, 294, 296, 330, 331, 335, 336, 337, 341,
342, 343, 347, 348, 349, 353, 354, 355, 371, 371, 372, 372, 373, 373, 374, 374, 375, 375, 376, 376, 376,
376, 376, 381, 387, 388, 389, 390, 391, 392, 392, 392, 392, 392, 398, 404, 406, 407, 409, 433, 438, 459,
462, 465, 466, 492, 493, 497, 564, 564, 568, 568, 577, 586, 603, 605, 606, 607 and 296.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 6.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 295, 296, 296, 405, 405, 406, 407, 524, 525, 587, 604, 605 and 608.

KoaCombat | Security Analysis

CONCLUSION

We have audited the KoaCombat project released on February 2022 to discover issues and identify potential
security vulnerabilities in KoaCombat Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the KoaCombat smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set and out of bounds array access which the index access expression
can cause an exception in case of the use of an invalid array index value.

KoaCombat | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

KoaCombat | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

KoaCombat | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

KoaCombat | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Feb 18 2022 14:13:57 GMT+0000 (Coordinated Universal Time)

Finished Saturday Feb 19 2022 10:18:36 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File KoaCombat.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 119

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

118

119 uint256 private _tTotal = 5e16 * 10**_decimals;

120 uint256 private _rTotal = (MAX - (MAX % _tTotal));

121

122

123

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 119

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

118

119 uint256 private _tTotal = 5e16 * 10**_decimals;

120 uint256 private _rTotal = (MAX - (MAX % _tTotal));

121

122

123

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 120

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

119 uint256 private _tTotal = 5e16 * 10**_decimals;

120 uint256 private _rTotal = (MAX - (MAX % _tTotal));

121

122

123 uint256 public swapTokensAtAmount = 500_000_000_000 * 10**_decimals;

124

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 120

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

119 uint256 private _tTotal = 5e16 * 10**_decimals;

120 uint256 private _rTotal = (MAX - (MAX % _tTotal));

121

122

123 uint256 public swapTokensAtAmount = 500_000_000_000 * 10**_decimals;

124

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 123

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

122

123 uint256 public swapTokensAtAmount = 500_000_000_000 * 10**_decimals;

124 uint256 public maxTxAmount = 5_000_000_000_000 * 10**_decimals;

125

126 // Anti Dump //

127

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 123

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

122

123 uint256 public swapTokensAtAmount = 500_000_000_000 * 10**_decimals;

124 uint256 public maxTxAmount = 5_000_000_000_000 * 10**_decimals;

125

126 // Anti Dump //

127

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 124

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

123 uint256 public swapTokensAtAmount = 500_000_000_000 * 10**_decimals;

124 uint256 public maxTxAmount = 5_000_000_000_000 * 10**_decimals;

125

126 // Anti Dump //

127 mapping (address => uint256) public _lastTrade;

128

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 124

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

123 uint256 public swapTokensAtAmount = 500_000_000_000 * 10**_decimals;

124 uint256 public maxTxAmount = 5_000_000_000_000 * 10**_decimals;

125

126 // Anti Dump //

127 mapping (address => uint256) public _lastTrade;

128

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 244

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

243 require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");

244 _approve(sender, _msgSender(), currentAllowance - amount);

245

246 return true;

247 }

248

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 250

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

249 function increaseAllowance(address spender, uint256 addedValue) public virtual

returns (bool) {

250 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

251 return true;

252 }

253

254

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 257

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

256 require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below

zero");

257 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

258

259 return true;

260 }

261

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 280

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

279 uint256 currentRate = _getRate();

280 return rAmount/currentRate;

281 }

282

283 function excludeFromReward(address account) public onlyOwner() {

284

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 294

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

293 require(_isExcluded[account], "Account is not excluded");

294 for (uint256 i = 0; i < _excluded.length; i++) {

295 if (_excluded[i] == account) {

296 _excluded[i] = _excluded[_excluded.length - 1];

297 _tOwned[account] = 0;

298

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 296

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

295 if (_excluded[i] == account) {

296 _excluded[i] = _excluded[_excluded.length - 1];

297 _tOwned[account] = 0;

298 _isExcluded[account] = false;

299 _excluded.pop();

300

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 330

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

329 function _reflectRfi(uint256 rRfi, uint256 tRfi) private {

330 _rTotal -=rRfi;

331 totFeesPaid.rfi +=tRfi;

332 }

333

334

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 331

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

330 _rTotal -=rRfi;

331 totFeesPaid.rfi +=tRfi;

332 }

333

334 function _takeLiquidity(uint256 rLiquidity, uint256 tLiquidity) private {

335

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 335

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

334 function _takeLiquidity(uint256 rLiquidity, uint256 tLiquidity) private {

335 totFeesPaid.liquidity +=tLiquidity;

336 if(_isExcluded[address(this)]) _tOwned[address(this)]+=tLiquidity;

337 _rOwned[address(this)] +=rLiquidity;

338 }

339

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 336

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

335 totFeesPaid.liquidity +=tLiquidity;

336 if(_isExcluded[address(this)]) _tOwned[address(this)]+=tLiquidity;

337 _rOwned[address(this)] +=rLiquidity;

338 }

339

340

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 337

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

336 if(_isExcluded[address(this)]) _tOwned[address(this)]+=tLiquidity;

337 _rOwned[address(this)] +=rLiquidity;

338 }

339

340 function _takeTreasury(uint256 rTreasury, uint256 tTreasury) private {

341

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 341

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

340 function _takeTreasury(uint256 rTreasury, uint256 tTreasury) private {

341 totFeesPaid.treasury +=tTreasury;

342 if(_isExcluded[treasuryAddress]) _tOwned[treasuryAddress]+=tTreasury;

343 _rOwned[treasuryAddress] +=rTreasury;

344 }

345

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 342

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

341 totFeesPaid.treasury +=tTreasury;

342 if(_isExcluded[treasuryAddress]) _tOwned[treasuryAddress]+=tTreasury;

343 _rOwned[treasuryAddress] +=rTreasury;

344 }

345

346

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 343

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

342 if(_isExcluded[treasuryAddress]) _tOwned[treasuryAddress]+=tTreasury;

343 _rOwned[treasuryAddress] +=rTreasury;

344 }

345

346 function _takeCharity(uint256 rCharity, uint256 tCharity) private{

347

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 347

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

346 function _takeCharity(uint256 rCharity, uint256 tCharity) private{

347 totFeesPaid.charity +=tCharity;

348 if(_isExcluded[charityAddress]) _tOwned[charityAddress]+=tCharity;

349 _rOwned[charityAddress] +=rCharity;

350 }

351

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 348

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

347 totFeesPaid.charity +=tCharity;

348 if(_isExcluded[charityAddress]) _tOwned[charityAddress]+=tCharity;

349 _rOwned[charityAddress] +=rCharity;

350 }

351

352

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 349

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

348 if(_isExcluded[charityAddress]) _tOwned[charityAddress]+=tCharity;

349 _rOwned[charityAddress] +=rCharity;

350 }

351

352 function _takeBurn(uint256 rBurn, uint256 tBurn) private{

353

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 353

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

352 function _takeBurn(uint256 rBurn, uint256 tBurn) private{

353 totFeesPaid.burn +=tBurn;

354 if(_isExcluded[charityAddress])_tOwned[burnAddress]+=tBurn;

355 _rOwned[burnAddress] +=rBurn;

356 }

357

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 354

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

353 totFeesPaid.burn +=tBurn;

354 if(_isExcluded[charityAddress])_tOwned[burnAddress]+=tBurn;

355 _rOwned[burnAddress] +=rBurn;

356 }

357

358

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 355

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

354 if(_isExcluded[charityAddress])_tOwned[burnAddress]+=tBurn;

355 _rOwned[burnAddress] +=rBurn;

356 }

357

358 function _getValues(uint256 tAmount, bool takeFee) private view returns

(valuesFromGetValues memory to_return) {

359

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 371

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

370

371 s.tRfi = tAmount*taxes.rfi/1000;

372 s.tTreasury = tAmount*taxes.treasury/1000;

373 s.tCharity = tAmount*taxes.charity/1000;

374 s.tBurn = tAmount*taxes.burn/1000;

375

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 371

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

370

371 s.tRfi = tAmount*taxes.rfi/1000;

372 s.tTreasury = tAmount*taxes.treasury/1000;

373 s.tCharity = tAmount*taxes.charity/1000;

374 s.tBurn = tAmount*taxes.burn/1000;

375

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 372

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

371 s.tRfi = tAmount*taxes.rfi/1000;

372 s.tTreasury = tAmount*taxes.treasury/1000;

373 s.tCharity = tAmount*taxes.charity/1000;

374 s.tBurn = tAmount*taxes.burn/1000;

375 s.tLiquidity = tAmount*taxes.liquidity/1000;

376

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 372

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

371 s.tRfi = tAmount*taxes.rfi/1000;

372 s.tTreasury = tAmount*taxes.treasury/1000;

373 s.tCharity = tAmount*taxes.charity/1000;

374 s.tBurn = tAmount*taxes.burn/1000;

375 s.tLiquidity = tAmount*taxes.liquidity/1000;

376

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 373

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

372 s.tTreasury = tAmount*taxes.treasury/1000;

373 s.tCharity = tAmount*taxes.charity/1000;

374 s.tBurn = tAmount*taxes.burn/1000;

375 s.tLiquidity = tAmount*taxes.liquidity/1000;

376 s.tTransferAmount = tAmount-s.tRfi-s.tTreasury-s.tLiquidity-s.tCharity-s.tBurn;

377

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 373

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

372 s.tTreasury = tAmount*taxes.treasury/1000;

373 s.tCharity = tAmount*taxes.charity/1000;

374 s.tBurn = tAmount*taxes.burn/1000;

375 s.tLiquidity = tAmount*taxes.liquidity/1000;

376 s.tTransferAmount = tAmount-s.tRfi-s.tTreasury-s.tLiquidity-s.tCharity-s.tBurn;

377

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 374

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

373 s.tCharity = tAmount*taxes.charity/1000;

374 s.tBurn = tAmount*taxes.burn/1000;

375 s.tLiquidity = tAmount*taxes.liquidity/1000;

376 s.tTransferAmount = tAmount-s.tRfi-s.tTreasury-s.tLiquidity-s.tCharity-s.tBurn;

377 return s;

378

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 374

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

373 s.tCharity = tAmount*taxes.charity/1000;

374 s.tBurn = tAmount*taxes.burn/1000;

375 s.tLiquidity = tAmount*taxes.liquidity/1000;

376 s.tTransferAmount = tAmount-s.tRfi-s.tTreasury-s.tLiquidity-s.tCharity-s.tBurn;

377 return s;

378

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 375

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

374 s.tBurn = tAmount*taxes.burn/1000;

375 s.tLiquidity = tAmount*taxes.liquidity/1000;

376 s.tTransferAmount = tAmount-s.tRfi-s.tTreasury-s.tLiquidity-s.tCharity-s.tBurn;

377 return s;

378 }

379

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 375

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

374 s.tBurn = tAmount*taxes.burn/1000;

375 s.tLiquidity = tAmount*taxes.liquidity/1000;

376 s.tTransferAmount = tAmount-s.tRfi-s.tTreasury-s.tLiquidity-s.tCharity-s.tBurn;

377 return s;

378 }

379

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 376

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

375 s.tLiquidity = tAmount*taxes.liquidity/1000;

376 s.tTransferAmount = tAmount-s.tRfi-s.tTreasury-s.tLiquidity-s.tCharity-s.tBurn;

377 return s;

378 }

379

380

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 376

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

375 s.tLiquidity = tAmount*taxes.liquidity/1000;

376 s.tTransferAmount = tAmount-s.tRfi-s.tTreasury-s.tLiquidity-s.tCharity-s.tBurn;

377 return s;

378 }

379

380

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 376

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

375 s.tLiquidity = tAmount*taxes.liquidity/1000;

376 s.tTransferAmount = tAmount-s.tRfi-s.tTreasury-s.tLiquidity-s.tCharity-s.tBurn;

377 return s;

378 }

379

380

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 376

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

375 s.tLiquidity = tAmount*taxes.liquidity/1000;

376 s.tTransferAmount = tAmount-s.tRfi-s.tTreasury-s.tLiquidity-s.tCharity-s.tBurn;

377 return s;

378 }

379

380

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 376

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

375 s.tLiquidity = tAmount*taxes.liquidity/1000;

376 s.tTransferAmount = tAmount-s.tRfi-s.tTreasury-s.tLiquidity-s.tCharity-s.tBurn;

377 return s;

378 }

379

380

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 381

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

380 function _getRValues(valuesFromGetValues memory s, uint256 tAmount, bool takeFee,

uint256 currentRate) private pure returns (uint256 rAmount, uint256 rTransferAmount,

uint256 rRfi,uint256 rTreasury,uint256 rCharity,uint256 rBurn,uint256 rLiquidity) {

381 rAmount = tAmount*currentRate;

382

383 if(!takeFee) {

384 return(rAmount, rAmount, 0,0,0,0,0);

385

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 387

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

386

387 rRfi = s.tRfi*currentRate;

388 rTreasury = s.tTreasury*currentRate;

389 rLiquidity = s.tLiquidity*currentRate;

390 rCharity = s.tCharity*currentRate;

391

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 388

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

387 rRfi = s.tRfi*currentRate;

388 rTreasury = s.tTreasury*currentRate;

389 rLiquidity = s.tLiquidity*currentRate;

390 rCharity = s.tCharity*currentRate;

391 rBurn = s.tBurn*currentRate;

392

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 389

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

388 rTreasury = s.tTreasury*currentRate;

389 rLiquidity = s.tLiquidity*currentRate;

390 rCharity = s.tCharity*currentRate;

391 rBurn = s.tBurn*currentRate;

392 rTransferAmount = rAmount-rRfi-rTreasury-rLiquidity-rCharity-rBurn;

393

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 390

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

389 rLiquidity = s.tLiquidity*currentRate;

390 rCharity = s.tCharity*currentRate;

391 rBurn = s.tBurn*currentRate;

392 rTransferAmount = rAmount-rRfi-rTreasury-rLiquidity-rCharity-rBurn;

393 return (rAmount, rTransferAmount, rRfi,rTreasury,rCharity,rBurn,rLiquidity);

394

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 391

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

390 rCharity = s.tCharity*currentRate;

391 rBurn = s.tBurn*currentRate;

392 rTransferAmount = rAmount-rRfi-rTreasury-rLiquidity-rCharity-rBurn;

393 return (rAmount, rTransferAmount, rRfi,rTreasury,rCharity,rBurn,rLiquidity);

394 }

395

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 392

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

391 rBurn = s.tBurn*currentRate;

392 rTransferAmount = rAmount-rRfi-rTreasury-rLiquidity-rCharity-rBurn;

393 return (rAmount, rTransferAmount, rRfi,rTreasury,rCharity,rBurn,rLiquidity);

394 }

395

396

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 392

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

391 rBurn = s.tBurn*currentRate;

392 rTransferAmount = rAmount-rRfi-rTreasury-rLiquidity-rCharity-rBurn;

393 return (rAmount, rTransferAmount, rRfi,rTreasury,rCharity,rBurn,rLiquidity);

394 }

395

396

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 392

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

391 rBurn = s.tBurn*currentRate;

392 rTransferAmount = rAmount-rRfi-rTreasury-rLiquidity-rCharity-rBurn;

393 return (rAmount, rTransferAmount, rRfi,rTreasury,rCharity,rBurn,rLiquidity);

394 }

395

396

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 392

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

391 rBurn = s.tBurn*currentRate;

392 rTransferAmount = rAmount-rRfi-rTreasury-rLiquidity-rCharity-rBurn;

393 return (rAmount, rTransferAmount, rRfi,rTreasury,rCharity,rBurn,rLiquidity);

394 }

395

396

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 392

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

391 rBurn = s.tBurn*currentRate;

392 rTransferAmount = rAmount-rRfi-rTreasury-rLiquidity-rCharity-rBurn;

393 return (rAmount, rTransferAmount, rRfi,rTreasury,rCharity,rBurn,rLiquidity);

394 }

395

396

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 398

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

397 (uint256 rSupply, uint256 tSupply) = _getCurrentSupply();

398 return rSupply/tSupply;

399 }

400

401 function _getCurrentSupply() private view returns(uint256, uint256) {

402

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 404

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

403 uint256 tSupply = _tTotal;

404 for (uint256 i = 0; i < _excluded.length; i++) {

405 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

406 rSupply = rSupply-_rOwned[_excluded[i]];

407 tSupply = tSupply-_tOwned[_excluded[i]];

408

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 406

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

405 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

406 rSupply = rSupply-_rOwned[_excluded[i]];

407 tSupply = tSupply-_tOwned[_excluded[i]];

408 }

409 if (rSupply < _rTotal/_tTotal) return (_rTotal, _tTotal);

410

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 407

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

406 rSupply = rSupply-_rOwned[_excluded[i]];

407 tSupply = tSupply-_tOwned[_excluded[i]];

408 }

409 if (rSupply < _rTotal/_tTotal) return (_rTotal, _tTotal);

410 return (rSupply, tSupply);

411

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 409

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

408 }

409 if (rSupply < _rTotal/_tTotal) return (_rTotal, _tTotal);

410 return (rSupply, tSupply);

411 }

412

413

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 433

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

432 if(from != pair && coolDownEnabled){

433 uint256 timePassed = block.timestamp - _lastTrade[from];

434 require(timePassed > coolDownTime, "You must wait coolDownTime");

435 _lastTrade[from] = block.timestamp;

436 }

437

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 438

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

437 if(to != pair && coolDownEnabled){

438 uint256 timePassed2 = block.timestamp - _lastTrade[to];

439 require(timePassed2 > coolDownTime, "You must wait coolDownTime");

440 _lastTrade[to] = block.timestamp;

441 }

442

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 459

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

458 if (_isExcluded[sender]) { //from excluded

459 _tOwned[sender] = _tOwned[sender]-tAmount;

460 }

461 if (_isExcluded[recipient]) { //to excluded

462 _tOwned[recipient] = _tOwned[recipient]+s.tTransferAmount;

463

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 462

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

461 if (_isExcluded[recipient]) { //to excluded

462 _tOwned[recipient] = _tOwned[recipient]+s.tTransferAmount;

463 }

464

465 _rOwned[sender] = _rOwned[sender]-s.rAmount;

466

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 465

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

464

465 _rOwned[sender] = _rOwned[sender]-s.rAmount;

466 _rOwned[recipient] = _rOwned[recipient]+s.rTransferAmount;

467

468 if(s.rRfi > 0 || s.tRfi > 0) _reflectRfi(s.rRfi, s.tRfi);

469

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 466

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

465 _rOwned[sender] = _rOwned[sender]-s.rAmount;

466 _rOwned[recipient] = _rOwned[recipient]+s.rTransferAmount;

467

468 if(s.rRfi > 0 || s.tRfi > 0) _reflectRfi(s.rRfi, s.tRfi);

469 if(s.rLiquidity > 0 || s.tLiquidity > 0) {

470

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 492

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

491 // Split the contract balance into halves

492 uint256 tokensToAddLiquidityWith = tokens / 2;

493 uint256 toSwap = tokens - tokensToAddLiquidityWith;

494

495 uint256 initialBalance = address(this).balance;

496

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 493

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

492 uint256 tokensToAddLiquidityWith = tokens / 2;

493 uint256 toSwap = tokens - tokensToAddLiquidityWith;

494

495 uint256 initialBalance = address(this).balance;

496 swapTokensForETH(toSwap);

497

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 497

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

496 swapTokensForETH(toSwap);

497 uint256 ETHToAddLiquidityWith = address(this).balance - initialBalance;

498

499 if(ETHToAddLiquidityWith > 0){

500 // Add liquidity to pancake

501

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 564

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

563 function updatMaxTxAmt(uint256 amount) external onlyOwner{

564 maxTxAmount = amount * 10**_decimals;

565 }

566

567 function updateSwapTokensAtAmount(uint256 amount) external onlyOwner{

568

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 564

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

563 function updatMaxTxAmt(uint256 amount) external onlyOwner{

564 maxTxAmount = amount * 10**_decimals;

565 }

566

567 function updateSwapTokensAtAmount(uint256 amount) external onlyOwner{

568

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 568

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

567 function updateSwapTokensAtAmount(uint256 amount) external onlyOwner{

568 swapTokensAtAmount = amount * 10**_decimals;

569 }

570

571 function updateSwapEnabled(bool _enabled) external onlyOwner{

572

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 568

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

567 function updateSwapTokensAtAmount(uint256 amount) external onlyOwner{

568 swapTokensAtAmount = amount * 10**_decimals;

569 }

570

571 function updateSwapEnabled(bool _enabled) external onlyOwner{

572

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 577

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

576 coolDownEnabled = _enabled;

577 coolDownTime = _timeInSeconds * 1 seconds;

578 }

579

580 function setAntibot(address account, bool state) external onlyOwner{

581

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 586

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

585 function bulkAntiBot(address[] memory accounts, bool state) external onlyOwner{

586 for(uint256 i = 0; i < accounts.length; i++){

587 _isBot[accounts[i]] = state;

588 }

589 }

590

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 603

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

602 address sender = msg.sender;

603 for(uint256 i; i<recipients.length; i++){

604 address recipient = recipients[i];

605 uint256 rAmount = amounts[i]*_getRate();

606 _rOwned[sender] = _rOwned[sender]- rAmount;

607

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 605

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

604 address recipient = recipients[i];

605 uint256 rAmount = amounts[i]*_getRate();

606 _rOwned[sender] = _rOwned[sender]- rAmount;

607 _rOwned[recipient] = _rOwned[recipient] + rAmount;

608 emit Transfer(sender, recipient, amounts[i]);

609

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 606

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

605 uint256 rAmount = amounts[i]*_getRate();

606 _rOwned[sender] = _rOwned[sender]- rAmount;

607 _rOwned[recipient] = _rOwned[recipient] + rAmount;

608 emit Transfer(sender, recipient, amounts[i]);

609 }

610

KoaCombat | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 607

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

606 _rOwned[sender] = _rOwned[sender]- rAmount;

607 _rOwned[recipient] = _rOwned[recipient] + rAmount;

608 emit Transfer(sender, recipient, amounts[i]);

609 }

610 }

611

KoaCombat | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 296

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KoaCombat.sol

Locations

295 if (_excluded[i] == account) {

296 _excluded[i] = _excluded[_excluded.length - 1];

297 _tOwned[account] = 0;

298 _isExcluded[account] = false;

299 _excluded.pop();

300

KoaCombat | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is ""^0.8.10"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- KoaCombat.sol

Locations

5 // SPDX-License-Identifier: NOLICENSE

6 pragma solidity ^0.8.10;

7

8 interface IERC20 {

9 function totalSupply() external view returns (uint256);

10

KoaCombat | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 295

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KoaCombat.sol

Locations

294 for (uint256 i = 0; i < _excluded.length; i++) {

295 if (_excluded[i] == account) {

296 _excluded[i] = _excluded[_excluded.length - 1];

297 _tOwned[account] = 0;

298 _isExcluded[account] = false;

299

KoaCombat | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 296

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KoaCombat.sol

Locations

295 if (_excluded[i] == account) {

296 _excluded[i] = _excluded[_excluded.length - 1];

297 _tOwned[account] = 0;

298 _isExcluded[account] = false;

299 _excluded.pop();

300

KoaCombat | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 296

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KoaCombat.sol

Locations

295 if (_excluded[i] == account) {

296 _excluded[i] = _excluded[_excluded.length - 1];

297 _tOwned[account] = 0;

298 _isExcluded[account] = false;

299 _excluded.pop();

300

KoaCombat | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 405

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KoaCombat.sol

Locations

404 for (uint256 i = 0; i < _excluded.length; i++) {

405 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

406 rSupply = rSupply-_rOwned[_excluded[i]];

407 tSupply = tSupply-_tOwned[_excluded[i]];

408 }

409

KoaCombat | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 405

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KoaCombat.sol

Locations

404 for (uint256 i = 0; i < _excluded.length; i++) {

405 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

406 rSupply = rSupply-_rOwned[_excluded[i]];

407 tSupply = tSupply-_tOwned[_excluded[i]];

408 }

409

KoaCombat | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 406

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KoaCombat.sol

Locations

405 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

406 rSupply = rSupply-_rOwned[_excluded[i]];

407 tSupply = tSupply-_tOwned[_excluded[i]];

408 }

409 if (rSupply < _rTotal/_tTotal) return (_rTotal, _tTotal);

410

KoaCombat | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 407

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KoaCombat.sol

Locations

406 rSupply = rSupply-_rOwned[_excluded[i]];

407 tSupply = tSupply-_tOwned[_excluded[i]];

408 }

409 if (rSupply < _rTotal/_tTotal) return (_rTotal, _tTotal);

410 return (rSupply, tSupply);

411

KoaCombat | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 524

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KoaCombat.sol

Locations

523 address[] memory path = new address[](2);

524 path[0] = address(this);

525 path[1] = router.WETH();

526

527 _approve(address(this), address(router), tokenAmount);

528

KoaCombat | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 525

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KoaCombat.sol

Locations

524 path[0] = address(this);

525 path[1] = router.WETH();

526

527 _approve(address(this), address(router), tokenAmount);

528

529

KoaCombat | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 587

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KoaCombat.sol

Locations

586 for(uint256 i = 0; i < accounts.length; i++){

587 _isBot[accounts[i]] = state;

588 }

589 }

590

591

KoaCombat | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 604

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KoaCombat.sol

Locations

603 for(uint256 i; i<recipients.length; i++){

604 address recipient = recipients[i];

605 uint256 rAmount = amounts[i]*_getRate();

606 _rOwned[sender] = _rOwned[sender]- rAmount;

607 _rOwned[recipient] = _rOwned[recipient] + rAmount;

608

KoaCombat | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 605

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KoaCombat.sol

Locations

604 address recipient = recipients[i];

605 uint256 rAmount = amounts[i]*_getRate();

606 _rOwned[sender] = _rOwned[sender]- rAmount;

607 _rOwned[recipient] = _rOwned[recipient] + rAmount;

608 emit Transfer(sender, recipient, amounts[i]);

609

KoaCombat | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 608

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KoaCombat.sol

Locations

607 _rOwned[recipient] = _rOwned[recipient] + rAmount;

608 emit Transfer(sender, recipient, amounts[i]);

609 }

610 }

611

612

KoaCombat | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

KoaCombat | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

