
ERC20

Smart Contract
Audit Report

11 Mar 2021

ERC20 | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

ERC20 | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

ERC20 ERC20 Binance Smart Chain

| Addresses

Contract address 0x58730ae0faa10d73b0cddb5e7b87c3594f7a20cb

Contract deployer address 0xE1fd5CDd0C0B2804B32ab94e03346c78826980AE

| Project Website

https://erc20.tech/

| Codebase

https://bscscan.com/address/0x58730ae0faa10d73b0cddb5e7b87c3594f7a20cb#code

https://erc20.tech/
https://bscscan.com/address/0x58730ae0faa10d73b0cddb5e7b87c3594f7a20cb#code

ERC20 | Security Analysis

SUMMARY

ERC20 Token — is a cryptocurrency, an open-source, public, blockchain-based coin with operating Ethereum
Blockchain Network featuring smart contract functionality in the version of erc-20 standard protocol. Although
the Ethereum Foundation and figureheads like Vitalik played a significant role in Ethereum’s trajectory early on,
the community is taking up the torch to decentralize processes. From these five years, Decision-making
processes in Ethereum have matured significantly as the network and users have grown. The Ethereum
Network and erc-20 standard became more popular each year through dissemination, use, and popularization.
Having a bar is very important as it allows to coin to be compatible with every wallet and every exchange built
to the same standards. The standards provide the functionality to transfer tokens, send and receive, and allow
tokens to be approved to be another on-chain third party, etc., that can spend theming; Bitcoin could ship and
store only by email, and on hard disks, there were no digital wallets. So we are sure it was one of the main
problems in widely popularizing and distributing Bitcoin since it was not easy to store. Conclusion about erc
standard: There is no way to confuse the erc-20 and ERC20 Token. It’s an entirely different tool. But we are
here to help users if they have any questions. ERC20 Token has registered in the Ethereum contract ABI
language, and the contract source code of ERC20 and name are verified—many tokens on the blockchain use
erc 20 standards. And there is plenty of different bars to choose from: ERC, ERC 20, ERC 137, ERC 681, IEEE,
etc. And now, through the years, erc standard and ERC20 Token have been widely adopted (100.00 ERC20
Holders) because of the new users, popularization, and naming. Nowadays, some coins do not even have half
of the advantages, integrations, and updates that the ERC20 Token now has.

| Contract Summary

Documentation Quality

ERC20 provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by ERC20 with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 130, 142, 155, 156, 167, 177, 191, 208, 223, 224, 242, 259, 277, 297, 317, 1288 and 1312.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 11, 38, 108,
325, 426, 736, 803, 809, 853, 880, 972, 1006, 1039, 1231, 1365, 1421, 1586, 1610 and 1631.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1289, 1289 and 1313.

ERC20 | Security Analysis

CONCLUSION

We have audited the ERC20 project released on March 2021 to discover issues and identify potential security
vulnerabilities in ERC20 Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the ERC20 smart contract code do not pose a considerable risk. The writing of the contract
is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, and out-of-bounds array access which the index access expression
can cause an exception in case an invalid array index value is used. The current pragma Solidity directive is
"">=0.6.00.8.0"". Specifying a fixed compiler version is recommended to ensure that the bytecode produced
does not vary between builds. This is especially important if you rely on bytecode-level verification of the code.

ERC20 | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

ERC20 | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

ERC20 | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

ERC20 | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Mar 10 2021 20:14:42 GMT+0000 (Coordinated Universal Time)

Finished Thursday Mar 11 2021 00:20:59 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File AmazingBEP20.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

ERC20 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 130

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AmazingBEP20.sol

Locations

129 function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {

130 uint256 c = a + b;

131 if (c < a) return (false, 0);

132 return (true, c);

133 }

134

ERC20 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 142

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AmazingBEP20.sol

Locations

141 if (b > a) return (false, 0);

142 return (true, a - b);

143 }

144

145 /**

146

ERC20 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 155

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AmazingBEP20.sol

Locations

154 if (a == 0) return (true, 0);

155 uint256 c = a * b;

156 if (c / a != b) return (false, 0);

157 return (true, c);

158 }

159

ERC20 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 156

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AmazingBEP20.sol

Locations

155 uint256 c = a * b;

156 if (c / a != b) return (false, 0);

157 return (true, c);

158 }

159

160

ERC20 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 167

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AmazingBEP20.sol

Locations

166 if (b == 0) return (false, 0);

167 return (true, a / b);

168 }

169

170 /**

171

ERC20 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 177

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AmazingBEP20.sol

Locations

176 if (b == 0) return (false, 0);

177 return (true, a % b);

178 }

179

180 /**

181

ERC20 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 191

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AmazingBEP20.sol

Locations

190 function add(uint256 a, uint256 b) internal pure returns (uint256) {

191 uint256 c = a + b;

192 require(c >= a, "SafeMath: addition overflow");

193 return c;

194 }

195

ERC20 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 208

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AmazingBEP20.sol

Locations

207 require(b <= a, "SafeMath: subtraction overflow");

208 return a - b;

209 }

210

211 /**

212

ERC20 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 223

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AmazingBEP20.sol

Locations

222 if (a == 0) return 0;

223 uint256 c = a * b;

224 require(c / a == b, "SafeMath: multiplication overflow");

225 return c;

226 }

227

ERC20 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 224

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AmazingBEP20.sol

Locations

223 uint256 c = a * b;

224 require(c / a == b, "SafeMath: multiplication overflow");

225 return c;

226 }

227

228

ERC20 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 242

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AmazingBEP20.sol

Locations

241 require(b > 0, "SafeMath: division by zero");

242 return a / b;

243 }

244

245 /**

246

ERC20 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 259

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AmazingBEP20.sol

Locations

258 require(b > 0, "SafeMath: modulo by zero");

259 return a % b;

260 }

261

262 /**

263

ERC20 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 277

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AmazingBEP20.sol

Locations

276 require(b <= a, errorMessage);

277 return a - b;

278 }

279

280 /**

281

ERC20 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 297

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AmazingBEP20.sol

Locations

296 require(b > 0, errorMessage);

297 return a / b;

298 }

299

300 /**

301

ERC20 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 317

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AmazingBEP20.sol

Locations

316 require(b > 0, errorMessage);

317 return a % b;

318 }

319 }

320

321

ERC20 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1288

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AmazingBEP20.sol

Locations

1287 // query support of each interface in interfaceIds

1288 for (uint256 i = 0; i < interfaceIds.length; i++) {

1289 interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);

1290 }

1291 }

1292

ERC20 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1312

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AmazingBEP20.sol

Locations

1311 // query support of each interface in _interfaceIds

1312 for (uint256 i = 0; i < interfaceIds.length; i++) {

1313 if (!_supportsERC165Interface(account, interfaceIds[i])) {

1314 return false;

1315 }

1316

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 11

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

10

11 pragma solidity >=0.6.0 <0.8.0;

12

13 /*

14 * @dev Provides information about the current execution context, including the

15

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 38

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

37

38 pragma solidity >=0.6.0 <0.8.0;

39

40 /**

41 * @dev Contract module which provides a basic access control mechanism, where

42

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 108

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

107

108 pragma solidity >=0.6.0 <0.8.0;

109

110 /**

111 * @dev Wrappers over Solidity's arithmetic operations with added overflow

112

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 325

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

324

325 pragma solidity ^0.7.0;

326

327 /**

328 * @dev Interface of the BEP standard.

329

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 426

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

425

426 pragma solidity ^0.7.0;

427

428

429

430

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 736

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

735

736 pragma solidity ^0.7.0;

737

738

739 /**

740

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 803

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

802

803 pragma solidity >=0.6.0 <0.8.0;

804

805 // File: contracts/token/BEP20/lib/BEP20Burnable.sol

806

807

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 809

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

808

809 pragma solidity ^0.7.0;

810

811

812

813

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 853

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

852

853 pragma solidity >=0.6.0 <0.8.0;

854

855 /**

856 * @dev Interface of the ERC165 standard, as defined in the

857

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 880

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

879

880 pragma solidity ^0.7.0;

881

882

883

884

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 972

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

971

972 pragma solidity ^0.7.0;

973

974 /**

975 * @title IBEP20OperableReceiver Interface

976

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1006

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

1005

1006 pragma solidity ^0.7.0;

1007

1008 /**

1009 * @title IBEP20OperableSpender Interface

1010

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1039

low SEVERITY
The current pragma Solidity directive is "">=0.6.2<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

1038

1039 pragma solidity >=0.6.2 <0.8.0;

1040

1041 /**

1042 * @dev Collection of functions related to the address type

1043

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1231

low SEVERITY
The current pragma Solidity directive is "">=0.6.2<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

1230

1231 pragma solidity >=0.6.2 <0.8.0;

1232

1233 /**

1234 * @dev Library used to query support of an interface declared via {IERC165}.

1235

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1365

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

1364

1365 pragma solidity >=0.6.0 <0.8.0;

1366

1367

1368 /**

1369

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1421

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

1420

1421 pragma solidity ^0.7.0;

1422

1423

1424

1425

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1586

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

1585

1586 pragma solidity ^0.7.0;

1587

1588

1589

1590

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1610

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

1609

1610 pragma solidity ^0.7.0;

1611

1612 interface IPayable {

1613 function pay(string memory serviceName) external payable;

1614

ERC20 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1631

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AmazingBEP20.sol

Locations

1630

1631 pragma solidity ^0.7.0;

1632

1633

1634

1635

ERC20 | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1289

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AmazingBEP20.sol

Locations

1288 for (uint256 i = 0; i < interfaceIds.length; i++) {

1289 interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);

1290 }

1291 }

1292

1293

ERC20 | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1289

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AmazingBEP20.sol

Locations

1288 for (uint256 i = 0; i < interfaceIds.length; i++) {

1289 interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);

1290 }

1291 }

1292

1293

ERC20 | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1313

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AmazingBEP20.sol

Locations

1312 for (uint256 i = 0; i < interfaceIds.length; i++) {

1313 if (!_supportsERC165Interface(account, interfaceIds[i])) {

1314 return false;

1315 }

1316 }

1317

ERC20 | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

ERC20 | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

