
Simpl

Smart Contract
Audit Report

23 Jan 2023

Simpl | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Simpl | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Simpl IMPL Ethereum

| Addresses

Contract address 0xe853383514939E94EFEF6040a0AC7fdDC3328D4D

Contract deployer address 0x08a151E17EBcD1c191aa78BcCf2427e402d03C9a

| Project Website

https://t.me/simplcoin

| Codebase

https://etherscan.io/address/0xe853383514939E94EFEF6040a0AC7fdDC3328D4D#code

https://t.me/simplcoin
https://etherscan.io/address/0xe853383514939E94EFEF6040a0AC7fdDC3328D4D#code

Simpl | Security Analysis

SUMMARY

$IMPL Coin is an ERC20 token on the Ethereum blockchain. Its motto is simplicity. They strive for speed
privacy and simplicity. It shows in the contract.

| Contract Summary

Documentation Quality

Simpl provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Simpl with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 673, 674, 675 and 701.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 415, 438, 471, 474, 496, 499, 525, 527, 577, 673, 673, 690, 690, 758, 758, 810, 810, 811 and 811.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 10, 37, 122,
207, 237 and 626.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 782 and 783.

Simpl | Security Analysis

CONCLUSION

We have audited the Simpl project released on January 2023 to discover issues and identify potential security
vulnerabilities in Simpl Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Simpl smart contract code do not pose a considerable risk. The writing of the contract
is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, and out of bounds array access
which the index access expression can cause an exception in case of the use of an invalid array index value.
We recommend setting the visibility of state variables explicitly. The default visibility for "feesToTransfer" is
internal. Other possible visibility settings are public and private.

Simpl | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Simpl | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Simpl | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Simpl | Security Analysis

SMART CONTRACT ANALYSIS

Started Sunday Jan 22 2023 18:18:38 GMT+0000 (Coordinated Universal Time)

Finished Monday Jan 23 2023 06:09:24 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Simpl.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 415

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

414 address owner = _msgSender();

415 _approve(owner, spender, allowance(owner, spender) + addedValue);

416 return true;

417 }

418

419

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 438

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

437 unchecked {

438 _approve(owner, spender, currentAllowance - subtractedValue);

439 }

440

441 return true;

442

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 471

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

470 unchecked {

471 _balances[from] = fromBalance - amount;

472 // Overflow not possible: the sum of all balances is capped by totalSupply, and the

sum is preserved by

473 // decrementing then incrementing.

474 _balances[to] += amount;

475

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 474

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

473 // decrementing then incrementing.

474 _balances[to] += amount;

475 }

476

477 emit Transfer(from, to, amount);

478

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 496

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

495

496 _totalSupply += amount;

497 unchecked {

498 // Overflow not possible: balance + amount is at most totalSupply + amount, which

is checked above.

499 _balances[account] += amount;

500

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 499

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

498 // Overflow not possible: balance + amount is at most totalSupply + amount, which

is checked above.

499 _balances[account] += amount;

500 }

501 emit Transfer(address(0), account, amount);

502

503

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 525

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

524 unchecked {

525 _balances[account] = accountBalance - amount;

526 // Overflow not possible: amount <= accountBalance <= totalSupply.

527 _totalSupply -= amount;

528 }

529

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 527

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

526 // Overflow not possible: amount <= accountBalance <= totalSupply.

527 _totalSupply -= amount;

528 }

529

530 emit Transfer(account, address(0), amount);

531

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 577

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

576 unchecked {

577 _approve(owner, spender, currentAllowance - amount);

578 }

579 }

580 }

581

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 673

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

672 // basic characteristics

673 uint256 supply = 1000000 * 10 ** decimals();

674 string tokenName = "Simpl";

675 string tokenSymbol = "IMPL";

676

677

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 673

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

672 // basic characteristics

673 uint256 supply = 1000000 * 10 ** decimals();

674 string tokenName = "Simpl";

675 string tokenSymbol = "IMPL";

676

677

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 690

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

689 uint256 private swapThreshold = 100;

690 uint256 private _swapThreshold = swapThreshold * 10 ** decimals();

691

692 // address where the Uniswap v2 Router02 is deployed

693 address public UniswapV2Router02Address =

address(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);

694

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 690

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

689 uint256 private swapThreshold = 100;

690 uint256 private _swapThreshold = swapThreshold * 10 ** decimals();

691

692 // address where the Uniswap v2 Router02 is deployed

693 address public UniswapV2Router02Address =

address(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);

694

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 758

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

757 if (from == uniswapV2Pair && _buyTax > 0) {

758 feesToTransfer = (amount * _buyTax) / 100;

759 }

760 }

761

762

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 758

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

757 if (from == uniswapV2Pair && _buyTax > 0) {

758 feesToTransfer = (amount * _buyTax) / 100;

759 }

760 }

761

762

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 810

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

809

810 uint256 ethForDev = (ethBalance * _developmentShare) / 100;

811 uint256 ethForMarketing = (ethBalance * _marketingShare) / 100;

812

813 (success,) = address(_developmentAddress).call{value: ethForDev}("");

814

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 810

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

809

810 uint256 ethForDev = (ethBalance * _developmentShare) / 100;

811 uint256 ethForMarketing = (ethBalance * _marketingShare) / 100;

812

813 (success,) = address(_developmentAddress).call{value: ethForDev}("");

814

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 811

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

810 uint256 ethForDev = (ethBalance * _developmentShare) / 100;

811 uint256 ethForMarketing = (ethBalance * _marketingShare) / 100;

812

813 (success,) = address(_developmentAddress).call{value: ethForDev}("");

814 (success,) = address(_marketingAddress).call{value: ethForMarketing}("");

815

Simpl | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 811

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Simpl.sol

Locations

810 uint256 ethForDev = (ethBalance * _developmentShare) / 100;

811 uint256 ethForMarketing = (ethBalance * _marketingShare) / 100;

812

813 (success,) = address(_developmentAddress).call{value: ethForDev}("");

814 (success,) = address(_marketingAddress).call{value: ethForMarketing}("");

815

Simpl | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 10

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Simpl.sol

Locations

9

10 pragma solidity ^0.8.0;

11

12 /**

13 * @dev Provides information about the current execution context, including the

14

Simpl | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 37

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Simpl.sol

Locations

36

37 pragma solidity ^0.8.0;

38

39

40 /**

41

Simpl | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 122

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Simpl.sol

Locations

121

122 pragma solidity ^0.8.0;

123

124 /**

125 * @dev Interface of the ERC20 standard as defined in the EIP.

126

Simpl | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 207

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Simpl.sol

Locations

206

207 pragma solidity ^0.8.0;

208

209

210 /**

211

Simpl | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 237

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Simpl.sol

Locations

236

237 pragma solidity ^0.8.0;

238

239

240

241

Simpl | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 626

low SEVERITY
The current pragma Solidity directive is ""^0.8.17"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Simpl.sol

Locations

625

626 pragma solidity ^0.8.17;

627

628

629

630

Simpl | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 673

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "supply" is internal.
Other possible visibility settings are public and private.

Source File
- Simpl.sol

Locations

672 // basic characteristics

673 uint256 supply = 1000000 * 10 ** decimals();

674 string tokenName = "Simpl";

675 string tokenSymbol = "IMPL";

676

677

Simpl | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 674

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "tokenName" is
internal. Other possible visibility settings are public and private.

Source File
- Simpl.sol

Locations

673 uint256 supply = 1000000 * 10 ** decimals();

674 string tokenName = "Simpl";

675 string tokenSymbol = "IMPL";

676

677 // buy tax in percentage points (i.e., 5 = 5%)

678

Simpl | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 675

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "tokenSymbol" is
internal. Other possible visibility settings are public and private.

Source File
- Simpl.sol

Locations

674 string tokenName = "Simpl";

675 string tokenSymbol = "IMPL";

676

677 // buy tax in percentage points (i.e., 5 = 5%)

678 uint256 private _buyTax = 5;

679

Simpl | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 701

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "feesToTransfer" is
internal. Other possible visibility settings are public and private.

Source File
- Simpl.sol

Locations

700 //uint256 amountToTransfer;

701 uint256 feesToTransfer;

702

703 constructor() ERC20(tokenName, tokenSymbol) {

704 // create reference to Uniswap v2 router

705

Simpl | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 782

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Simpl.sol

Locations

781 address[] memory path = new address[](2);

782 path[0] = address(this);

783 path[1] = uniswapV2Router.WETH();

784

785 _approve(address(this), address(uniswapV2Router), tokenAmount);

786

Simpl | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 783

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Simpl.sol

Locations

782 path[0] = address(this);

783 path[1] = uniswapV2Router.WETH();

784

785 _approve(address(this), address(uniswapV2Router), tokenAmount);

786

787

Simpl | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Simpl | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

