
WET Token

Smart Contract
Audit Report

13 Dec 2022

WET Token | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

WET Token | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

WET Token WET Binance Smart Chain

| Addresses

Contract address 0x324Ca33Dc70Ce3010AA70c1F94940Dd5C133490F

Contract deployer address 0x5066723eDf8af6455c9d1099C047e1EaBfB46b3b

| Project Website

https://wethub.co/

| Codebase

https://bscscan.com/address/0x324Ca33Dc70Ce3010AA70c1F94940Dd5C133490F#code

https://wethub.co/
https://bscscan.com/address/0x324Ca33Dc70Ce3010AA70c1F94940Dd5C133490F#code

WET Token | Security Analysis

SUMMARY

WetHub is a Web 3.0 social networking platform for content creators, that helps them earn extra income from
donations, and subscriptions from followers, and fans who are crypto users. NO presale, NO private sale,
Audited by BlockSafu, a company recommended by PinkSale, Lock in liquidity for 1 year, Release 100% tokens
immediately after listing on PancakeSwap, NFTs System, V1 Platform live now. Discount 10% for max
contribution (2 BNB)

| Contract Summary

Documentation Quality

WET Token provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by WET Token with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 955.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 209, 223, 238, 239, 252, 264, 279, 293, 307, 321, 337, 360, 383, 409, 923, 991, 991, 1000, 1000,
1012, 1194, 1196, 1236, 1236, 1247, 1247, 1255, 1255, 1262, 1366, 1400, 1408, 1417 and 1196.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1195, 1196, 1196, 1368, 1369, 1371, 1372, 1518 and 1519.

WET Token | Security Analysis

CONCLUSION

We have audited the WET Token project released on December 2022 to discover issues and identify potential
security vulnerabilities in WET Token Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the WET Token smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a state variable visibility is not set, and out of bounds array access which the index access
expression can cause an exception in case of the use of an invalid array index value.

WET Token | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

WET Token | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

WET Token | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

WET Token | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Dec 12 2022 15:49:40 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Dec 13 2022 02:30:32 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File LiquidityGeneratorToken.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 209

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

208 unchecked {

209 uint256 c = a + b;

210 if (c < a) return (false, 0);

211 return (true, c);

212 }

213

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 223

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

222 if (b > a) return (false, 0);

223 return (true, a - b);

224 }

225 }

226

227

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 238

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

237 if (a == 0) return (true, 0);

238 uint256 c = a * b;

239 if (c / a != b) return (false, 0);

240 return (true, c);

241 }

242

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 239

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

238 uint256 c = a * b;

239 if (c / a != b) return (false, 0);

240 return (true, c);

241 }

242 }

243

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 252

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

251 if (b == 0) return (false, 0);

252 return (true, a / b);

253 }

254 }

255

256

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 264

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

263 if (b == 0) return (false, 0);

264 return (true, a % b);

265 }

266 }

267

268

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 279

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

278 function add(uint256 a, uint256 b) internal pure returns (uint256) {

279 return a + b;

280 }

281

282 /**

283

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 293

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

292 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

293 return a - b;

294 }

295

296 /**

297

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 307

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

306 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

307 return a * b;

308 }

309

310 /**

311

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 321

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

320 function div(uint256 a, uint256 b) internal pure returns (uint256) {

321 return a / b;

322 }

323

324 /**

325

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 337

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

336 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

337 return a % b;

338 }

339

340 /**

341

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 360

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

359 require(b <= a, errorMessage);

360 return a - b;

361 }

362 }

363

364

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 383

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

382 require(b > 0, errorMessage);

383 return a / b;

384 }

385 }

386

387

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 409

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

408 require(b > 0, errorMessage);

409 return a % b;

410 }

411 }

412 }

413

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 923

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

922

923 uint256 public constant MAX_FEE = 10**3;

924

925 mapping(address => uint256) private _rOwned;

926 mapping(address => uint256) private _tOwned;

927

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 991

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

990 require(

991 taxFeeBps_ + liquidityFeeBps_ + marketingFeeBps_ <= MAX_FEE,

992 "Total fee is over 10%"

993);

994

995

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 991

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

990 require(

991 taxFeeBps_ + liquidityFeeBps_ + marketingFeeBps_ <= MAX_FEE,

992 "Total fee is over 10%"

993);

994

995

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1000

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

999 _tTotal = totalSupply_;

1000 _rTotal = (MAX - (MAX % _tTotal));

1001

1002 _taxFee = taxFeeBps_;

1003 _previousTaxFee = _taxFee;

1004

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 1000

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

999 _tTotal = totalSupply_;

1000 _rTotal = (MAX - (MAX % _tTotal));

1001

1002 _taxFee = taxFeeBps_;

1003 _previousTaxFee = _taxFee;

1004

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1012

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1011

1012 numTokensSellToAddToLiquidity = totalSupply_.div(10**3); // 0.1%

1013

1014 swapAndLiquifyEnabled = true;

1015

1016

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1194

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1193 require(_isExcluded[account], "Account is already excluded");

1194 for (uint256 i = 0; i < _excluded.length; i++) {

1195 if (_excluded[i] == account) {

1196 _excluded[i] = _excluded[_excluded.length - 1];

1197 _tOwned[account] = 0;

1198

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1196

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1195 if (_excluded[i] == account) {

1196 _excluded[i] = _excluded[_excluded.length - 1];

1197 _tOwned[account] = 0;

1198 _isExcluded[account] = false;

1199 _excluded.pop();

1200

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1236

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1235 require(

1236 _taxFee + _liquidityFee + _marketingFee <= MAX_FEE,

1237 "Total fee is over 10%"

1238);

1239 }

1240

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1236

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1235 require(

1236 _taxFee + _liquidityFee + _marketingFee <= MAX_FEE,

1237 "Total fee is over 10%"

1238);

1239 }

1240

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1247

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1246 require(

1247 _taxFee + _liquidityFee + _marketingFee <= MAX_FEE,

1248 "Total fee is over 10%"

1249);

1250 }

1251

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1247

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1246 require(

1247 _taxFee + _liquidityFee + _marketingFee <= MAX_FEE,

1248 "Total fee is over 10%"

1249);

1250 }

1251

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1255

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1254 require(

1255 _taxFee + _liquidityFee + _marketingFee <= MAX_FEE,

1256 "Total fee is over 10%"

1257);

1258 }

1259

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1255

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1254 require(

1255 _taxFee + _liquidityFee + _marketingFee <= MAX_FEE,

1256 "Total fee is over 10%"

1257);

1258 }

1259

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1262

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1261 require(

1262 _amount >= totalSupply().mul(5).div(10**4),

1263 "Swapback amount should be at least 0.05% of total supply"

1264);

1265 numTokensSellToAddToLiquidity = _amount;

1266

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1366

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1365 uint256 tSupply = _tTotal;

1366 for (uint256 i = 0; i < _excluded.length; i++) {

1367 if (

1368 _rOwned[_excluded[i]] > rSupply ||

1369 _tOwned[_excluded[i]] > tSupply

1370

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1400

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1399 function calculateTaxFee(uint256 _amount) private view returns (uint256) {

1400 return _amount.mul(_taxFee).div(10**4);

1401 }

1402

1403 function calculateLiquidityFee(uint256 _amount)

1404

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1408

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1407 {

1408 return _amount.mul(_liquidityFee).div(10**4);

1409 }

1410

1411 function calculateMarketingFee(uint256 _amount)

1412

WET Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1417

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1416 if (_marketingAddress == address(0)) return 0;

1417 return _amount.mul(_marketingFee).div(10**4);

1418 }

1419

1420 function removeAllFee() private {

1421

WET Token | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1196

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LiquidityGeneratorToken.sol

Locations

1195 if (_excluded[i] == account) {

1196 _excluded[i] = _excluded[_excluded.length - 1];

1197 _tOwned[account] = 0;

1198 _isExcluded[account] = false;

1199 _excluded.pop();

1200

WET Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 955

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- LiquidityGeneratorToken.sol

Locations

954

955 bool inSwapAndLiquify;

956 bool public swapAndLiquifyEnabled;

957

958 uint256 private numTokensSellToAddToLiquidity;

959

WET Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1195

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1194 for (uint256 i = 0; i < _excluded.length; i++) {

1195 if (_excluded[i] == account) {

1196 _excluded[i] = _excluded[_excluded.length - 1];

1197 _tOwned[account] = 0;

1198 _isExcluded[account] = false;

1199

WET Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1196

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1195 if (_excluded[i] == account) {

1196 _excluded[i] = _excluded[_excluded.length - 1];

1197 _tOwned[account] = 0;

1198 _isExcluded[account] = false;

1199 _excluded.pop();

1200

WET Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1196

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1195 if (_excluded[i] == account) {

1196 _excluded[i] = _excluded[_excluded.length - 1];

1197 _tOwned[account] = 0;

1198 _isExcluded[account] = false;

1199 _excluded.pop();

1200

WET Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1368

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1367 if (

1368 _rOwned[_excluded[i]] > rSupply ||

1369 _tOwned[_excluded[i]] > tSupply

1370) return (_rTotal, _tTotal);

1371 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1372

WET Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1369

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1368 _rOwned[_excluded[i]] > rSupply ||

1369 _tOwned[_excluded[i]] > tSupply

1370) return (_rTotal, _tTotal);

1371 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1372 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1373

WET Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1371

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1370) return (_rTotal, _tTotal);

1371 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1372 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1373 }

1374 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1375

WET Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1372

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1371 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1372 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1373 }

1374 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1375 return (rSupply, tSupply);

1376

WET Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1518

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1517 address[] memory path = new address[](2);

1518 path[0] = address(this);

1519 path[1] = uniswapV2Router.WETH();

1520

1521 _approve(address(this), address(uniswapV2Router), tokenAmount);

1522

WET Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1519

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LiquidityGeneratorToken.sol

Locations

1518 path[0] = address(this);

1519 path[1] = uniswapV2Router.WETH();

1520

1521 _approve(address(this), address(uniswapV2Router), tokenAmount);

1522

1523

WET Token | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

WET Token | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

