
CBomber Token

Smart Contract
Audit Report

17 Feb 2022

CBomber Token | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

CBomber Token | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

CBomber Token CBOMBER Polygon Matic

| Addresses

Contract address 0xcf74ae52ae2c848387e6cd0048e1ec5a93ee2c66

Contract deployer address 0x89d4c05848811155ce16a447c762421eaC93d927

| Project Website

https://cryptobomber.io/

| Codebase

https://polygonscan.com/address/0xcf74ae52ae2c848387e6cd0048e1ec5a93ee2c66#code

https://cryptobomber.io/
https://polygonscan.com/address/0xcf74ae52ae2c848387e6cd0048e1ec5a93ee2c66#code

CBomber Token | Security Analysis

SUMMARY

Crypto Bomber is a Play-to-Earn game with CBOMBER as token reward. This token has an auto staking
function that pays USDT for its holders. Crypto Bomber is a Play to Earn NFT RPG developed on the Polygon
Mainnet. The game revolves around the acquisition of powerful Hunters and blastering Bombs to detonate
them against the Monsters. Players may participate in combat using their assets to earn CBOMBER tokens.
Assets are player's owned NFTs minted in the ERC-721 standard which may be traded at our Marketplace or .

| Contract Summary

Documentation Quality

CBomber Token provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by CBomber Token with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 194, 202, 203, 204, 206, 207,
208, 221, 223, 360, 361, 362, 363, 369, 374, 375, 377, 378, 379, 381, 382, 383, 384, 385, 386, 391, 392,
399, 400, 401, 402, 406, 407, 408, 409, 410, 412, 413, 417 and 420.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 11, 21, 30, 31, 41, 216, 219, 219, 303, 304, 309, 351, 352, 369, 369, 370, 371, 371, 416, 522, 595, 608,
608, 654, 669, 351 and 352.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 7.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 266, 267, 297, 298, 351, 351, 352, 556, 557, 628 and 629.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 522, 595, 621,
649 and 665.

CBomber Token | Security Analysis

CONCLUSION

We have audited the CBomber Token project released on February 2022 to discover issues and identify
potential security vulnerabilities in CBomber Token Project. This process is used to find technical issues and
security loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the CBomber Token smart contract code do not pose a considerable risk. The writing of
the contract is close to the standard of writing contracts in general. The low-risk issues found are some
arithmetic operation issues, a floating pragma is set, a state variable visibility is not set, the potential use of
"block.number" as a source of randomness, and out-of-bounds array access which the index access
expression can cause an exception in case of the use of an invalid array index value. The current pragma
Solidity directive is ""^0.8.5"". Specifying a fixed compiler version is recommended to ensure that the bytecode
produced does not vary between builds. This is especially important if you rely on bytecode-level verification of
the code. It is best practice to set the visibility of state variables explicitly. The default visibility for "DEAD" is
internal. Other possible visibility settings are public and private. The environment variable "block.number" looks
like it might be used as a source of randomness. Note that the values of variables like coinbase, gaslimit, block
number, and timestamp are predictable and can be manipulated by a malicious miner. Also, keep in mind that
attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness, and be aware that using these variables introduces a certain level of trust into miners.

CBomber Token | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

CBomber Token | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

CBomber Token | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

CBomber Token | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Feb 16 2022 03:05:53 GMT+0000 (Coordinated Universal Time)

Finished Thursday Feb 17 2022 10:58:57 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File CBomber.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 11

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

10 function add(uint256 a, uint256 b) internal pure returns (uint256) {

11 uint256 c = a + b;

12 require(c >= a, "SafeMath: addition overflow");

13

14 return c;

15

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 21

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

20 require(b <= a, errorMessage);

21 uint256 c = a - b;

22

23 return c;

24 }

25

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 30

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

29

30 uint256 c = a * b;

31 require(c / a == b, "SafeMath: multiplication overflow");

32

33 return c;

34

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 31

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

30 uint256 c = a * b;

31 require(c / a == b, "SafeMath: multiplication overflow");

32

33 return c;

34 }

35

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 41

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

40 require(b > 0, errorMessage);

41 uint256 c = a / b;

42 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

43

44 return c;

45

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 216

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

215 uint256 public dividendsPerShare;

216 uint256 public dividendsPerShareAccuracyFactor = 10 ** 36;

217

218 uint256 public minPeriod = 1 hours;

219 uint256 public minDistribution = 1 * (10 ** 8);

220

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 219

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

218 uint256 public minPeriod = 1 hours;

219 uint256 public minDistribution = 1 * (10 ** 8);

220

221 uint256 currentIndex;

222

223

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 219

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

218 uint256 public minPeriod = 1 hours;

219 uint256 public minDistribution = 1 * (10 ** 8);

220

221 uint256 currentIndex;

222

223

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 303

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

302 gasLeft = gasleft();

303 currentIndex++;

304 iterations++;

305 }

306 }

307

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 304

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

303 currentIndex++;

304 iterations++;

305 }

306 }

307

308

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 309

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

308 function shouldDistribute(address shareholder) internal view returns (bool) {

309 return shareholderClaims[shareholder] + minPeriod < block.timestamp

310 && getUnpaidEarnings(shareholder) > minDistribution;

311 }

312

313

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 351

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

350 function removeShareholder(address shareholder) internal {

351 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

352 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

353 shareholders.pop();

354 }

355

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 352

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

351 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

352 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

353 shareholders.pop();

354 }

355 }

356

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 369

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

368

369 uint256 _totalSupply = 1000000 * (10 ** _decimals);

370 uint256 public _maxTxAmount = _totalSupply / 40; // 2,5%

371 uint256 public maxWalletTokens = 1000000 * (10**9); // Anti-Whale

372 bool public lockTransfer = false;

373

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 369

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

368

369 uint256 _totalSupply = 1000000 * (10 ** _decimals);

370 uint256 public _maxTxAmount = _totalSupply / 40; // 2,5%

371 uint256 public maxWalletTokens = 1000000 * (10**9); // Anti-Whale

372 bool public lockTransfer = false;

373

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 370

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

369 uint256 _totalSupply = 1000000 * (10 ** _decimals);

370 uint256 public _maxTxAmount = _totalSupply / 40; // 2,5%

371 uint256 public maxWalletTokens = 1000000 * (10**9); // Anti-Whale

372 bool public lockTransfer = false;

373

374

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 371

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

370 uint256 public _maxTxAmount = _totalSupply / 40; // 2,5%

371 uint256 public maxWalletTokens = 1000000 * (10**9); // Anti-Whale

372 bool public lockTransfer = false;

373

374 mapping (address => uint256) _balances;

375

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 371

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

370 uint256 public _maxTxAmount = _totalSupply / 40; // 2,5%

371 uint256 public maxWalletTokens = 1000000 * (10**9); // Anti-Whale

372 bool public lockTransfer = false;

373

374 mapping (address => uint256) _balances;

375

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 416

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

415 bool public swapEnabled = true;

416 uint256 public swapThreshold = _totalSupply / 200; // 5%

417 bool inSwap;

418 modifier swapping() { inSwap = true; _; inSwap = false; }

419

420

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 522

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

521 function getTotalFee(bool selling) public view returns (uint256) {

522 if(launchedAt + 1 >= block.number){ return feeDenominator.sub(1); }

523 if(selling && buybackMultiplierTriggeredAt.add(buybackMultiplierLength) >

block.timestamp){ return getMultipliedFee(); }

524 return totalFee;

525 }

526

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 595

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

594 && autoBuybackEnabled

595 && autoBuybackBlockLast + autoBuybackBlockPeriod <= block.number

596 && address(this).balance >= autoBuybackAmount;

597 }

598

599

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 608

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

607 function removeMaxWallet() public onlyOwner {

608 maxWalletTokens = 2000000000 * 10**9;

609 }

610

611 function clearBuybackMultiplier() external authorized {

612

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 608

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

607 function removeMaxWallet() public onlyOwner {

608 maxWalletTokens = 2000000000 * 10**9;

609 }

610

611 function clearBuybackMultiplier() external authorized {

612

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 654

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

653 function setBuybackMultiplierSettings(uint256 numerator, uint256 denominator,

uint256 length) external authorized {

654 require(numerator / denominator <= 2 && numerator > denominator);

655 buybackMultiplierNumerator = numerator;

656 buybackMultiplierDenominator = denominator;

657 buybackMultiplierLength = length;

658

CBomber Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 669

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

668 function setTxLimit(uint256 amount) external authorized {

669 require(amount >= _totalSupply / 1000);

670 _maxTxAmount = amount;

671 }

672

673

CBomber Token | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 351

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

350 function removeShareholder(address shareholder) internal {

351 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

352 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

353 shareholders.pop();

354 }

355

CBomber Token | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 352

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CBomber.sol

Locations

351 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

352 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

353 shareholders.pop();

354 }

355 }

356

CBomber Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 7

low SEVERITY
The current pragma Solidity directive is ""^0.8.5"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- CBomber.sol

Locations

6

7 pragma solidity ^0.8.5;

8

9 library SafeMath {

10 function add(uint256 a, uint256 b) internal pure returns (uint256) {

11

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 194

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_token" is internal.
Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

193

194 address _token;

195

196 struct Share {

197 uint256 amount;

198

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 202

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "USDT" is internal.
Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

201

202 IBEP20 USDT = IBEP20(0xc2132D05D31c914a87C6611C10748AEb04B58e8F);

203 address WBNB = 0x0d500B1d8E8eF31E21C99d1Db9A6444d3ADf1270;

204 IDEXRouter router;

205

206

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 203

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "WBNB" is internal.
Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

202 IBEP20 USDT = IBEP20(0xc2132D05D31c914a87C6611C10748AEb04B58e8F);

203 address WBNB = 0x0d500B1d8E8eF31E21C99d1Db9A6444d3ADf1270;

204 IDEXRouter router;

205

206 address[] shareholders;

207

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 204

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "router" is internal.
Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

203 address WBNB = 0x0d500B1d8E8eF31E21C99d1Db9A6444d3ADf1270;

204 IDEXRouter router;

205

206 address[] shareholders;

207 mapping (address => uint256) shareholderIndexes;

208

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 206

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "shareholders" is
internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

205

206 address[] shareholders;

207 mapping (address => uint256) shareholderIndexes;

208 mapping (address => uint256) shareholderClaims;

209

210

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 207

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "shareholderIndexes"
is internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

206 address[] shareholders;

207 mapping (address => uint256) shareholderIndexes;

208 mapping (address => uint256) shareholderClaims;

209

210 mapping (address => Share) public shares;

211

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 208

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "shareholderClaims" is
internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

207 mapping (address => uint256) shareholderIndexes;

208 mapping (address => uint256) shareholderClaims;

209

210 mapping (address => Share) public shares;

211

212

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 221

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "currentIndex" is
internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

220

221 uint256 currentIndex;

222

223 bool initialized;

224 modifier initialization() {

225

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 223

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "initialized" is internal.
Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

222

223 bool initialized;

224 modifier initialization() {

225 require(!initialized);

226 _;

227

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 360

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "USDT" is internal.
Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

359

360 address USDT = 0xc2132D05D31c914a87C6611C10748AEb04B58e8F;

361 address WBNB = 0x0d500B1d8E8eF31E21C99d1Db9A6444d3ADf1270;

362 address DEAD = 0x000000000000000000000000000000000000dEaD;

363 address ZERO = 0x00;

364

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 361

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "WBNB" is internal.
Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

360 address USDT = 0xc2132D05D31c914a87C6611C10748AEb04B58e8F;

361 address WBNB = 0x0d500B1d8E8eF31E21C99d1Db9A6444d3ADf1270;

362 address DEAD = 0x000000000000000000000000000000000000dEaD;

363 address ZERO = 0x00;

364

365

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 362

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "DEAD" is internal.
Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

361 address WBNB = 0x0d500B1d8E8eF31E21C99d1Db9A6444d3ADf1270;

362 address DEAD = 0x000000000000000000000000000000000000dEaD;

363 address ZERO = 0x00;

364

365 string constant _name = "CBomber Token";

366

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 363

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "ZERO" is internal.
Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

362 address DEAD = 0x000000000000000000000000000000000000dEaD;

363 address ZERO = 0x00;

364

365 string constant _name = "CBomber Token";

366 string constant _symbol = "CBOMBER";

367

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 369

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_totalSupply" is
internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

368

369 uint256 _totalSupply = 1000000 * (10 ** _decimals);

370 uint256 public _maxTxAmount = _totalSupply / 40; // 2,5%

371 uint256 public maxWalletTokens = 1000000 * (10**9); // Anti-Whale

372 bool public lockTransfer = false;

373

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 374

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_balances" is internal.
Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

373

374 mapping (address => uint256) _balances;

375 mapping (address => mapping (address => uint256)) _allowances;

376

377 mapping (address => bool) isFeeExempt;

378

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 375

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_allowances" is
internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

374 mapping (address => uint256) _balances;

375 mapping (address => mapping (address => uint256)) _allowances;

376

377 mapping (address => bool) isFeeExempt;

378 mapping (address => bool) isTxLimitExempt;

379

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 377

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isFeeExempt" is
internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

376

377 mapping (address => bool) isFeeExempt;

378 mapping (address => bool) isTxLimitExempt;

379 mapping (address => bool) isDividendExempt;

380

381

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 378

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isTxLimitExempt" is
internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

377 mapping (address => bool) isFeeExempt;

378 mapping (address => bool) isTxLimitExempt;

379 mapping (address => bool) isDividendExempt;

380

381 uint256 liquidityFee = 300;

382

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 379

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isDividendExempt" is
internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

378 mapping (address => bool) isTxLimitExempt;

379 mapping (address => bool) isDividendExempt;

380

381 uint256 liquidityFee = 300;

382 uint256 buybackFee = 0;

383

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 381

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "liquidityFee" is
internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

380

381 uint256 liquidityFee = 300;

382 uint256 buybackFee = 0;

383 uint256 reflectionFee = 300;

384 uint256 marketingFee = 0;

385

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 382

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "buybackFee" is
internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

381 uint256 liquidityFee = 300;

382 uint256 buybackFee = 0;

383 uint256 reflectionFee = 300;

384 uint256 marketingFee = 0;

385 uint256 totalFee = 600;

386

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 383

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "reflectionFee" is
internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

382 uint256 buybackFee = 0;

383 uint256 reflectionFee = 300;

384 uint256 marketingFee = 0;

385 uint256 totalFee = 600;

386 uint256 feeDenominator = 10000;

387

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 384

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "marketingFee" is
internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

383 uint256 reflectionFee = 300;

384 uint256 marketingFee = 0;

385 uint256 totalFee = 600;

386 uint256 feeDenominator = 10000;

387

388

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 385

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "totalFee" is internal.
Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

384 uint256 marketingFee = 0;

385 uint256 totalFee = 600;

386 uint256 feeDenominator = 10000;

387

388 address public autoLiquidityReceiver;

389

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 386

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "feeDenominator" is
internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

385 uint256 totalFee = 600;

386 uint256 feeDenominator = 10000;

387

388 address public autoLiquidityReceiver;

389 address public marketingFeeReceiver;

390

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 391

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "targetLiquidity" is
internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

390

391 uint256 targetLiquidity = 25;

392 uint256 targetLiquidityDenominator = 100;

393

394 IDEXRouter public router;

395

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 392

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"targetLiquidityDenominator" is internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

391 uint256 targetLiquidity = 25;

392 uint256 targetLiquidityDenominator = 100;

393

394 IDEXRouter public router;

395 address public pair;

396

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 399

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"buybackMultiplierNumerator" is internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

398

399 uint256 buybackMultiplierNumerator = 200;

400 uint256 buybackMultiplierDenominator = 100;

401 uint256 buybackMultiplierTriggeredAt;

402 uint256 buybackMultiplierLength = 30 minutes;

403

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 400

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"buybackMultiplierDenominator" is internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

399 uint256 buybackMultiplierNumerator = 200;

400 uint256 buybackMultiplierDenominator = 100;

401 uint256 buybackMultiplierTriggeredAt;

402 uint256 buybackMultiplierLength = 30 minutes;

403

404

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 401

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"buybackMultiplierTriggeredAt" is internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

400 uint256 buybackMultiplierDenominator = 100;

401 uint256 buybackMultiplierTriggeredAt;

402 uint256 buybackMultiplierLength = 30 minutes;

403

404 bool public autoBuybackEnabled = false;

405

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 402

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"buybackMultiplierLength" is internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

401 uint256 buybackMultiplierTriggeredAt;

402 uint256 buybackMultiplierLength = 30 minutes;

403

404 bool public autoBuybackEnabled = false;

405 bool public autoBuybackMultiplier = true;

406

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 406

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "autoBuybackCap" is
internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

405 bool public autoBuybackMultiplier = true;

406 uint256 autoBuybackCap;

407 uint256 autoBuybackAccumulator;

408 uint256 autoBuybackAmount;

409 uint256 autoBuybackBlockPeriod;

410

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 407

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"autoBuybackAccumulator" is internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

406 uint256 autoBuybackCap;

407 uint256 autoBuybackAccumulator;

408 uint256 autoBuybackAmount;

409 uint256 autoBuybackBlockPeriod;

410 uint256 autoBuybackBlockLast;

411

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 408

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "autoBuybackAmount"
is internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

407 uint256 autoBuybackAccumulator;

408 uint256 autoBuybackAmount;

409 uint256 autoBuybackBlockPeriod;

410 uint256 autoBuybackBlockLast;

411

412

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 409

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"autoBuybackBlockPeriod" is internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

408 uint256 autoBuybackAmount;

409 uint256 autoBuybackBlockPeriod;

410 uint256 autoBuybackBlockLast;

411

412 DividendDistributor distributor;

413

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 410

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"autoBuybackBlockLast" is internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

409 uint256 autoBuybackBlockPeriod;

410 uint256 autoBuybackBlockLast;

411

412 DividendDistributor distributor;

413 uint256 distributorGas = 500000;

414

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 412

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "distributor" is internal.
Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

411

412 DividendDistributor distributor;

413 uint256 distributorGas = 500000;

414

415 bool public swapEnabled = true;

416

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 413

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "distributorGas" is
internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

412 DividendDistributor distributor;

413 uint256 distributorGas = 500000;

414

415 bool public swapEnabled = true;

416 uint256 public swapThreshold = _totalSupply / 200; // 5%

417

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 417

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwap" is internal.
Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

416 uint256 public swapThreshold = _totalSupply / 200; // 5%

417 bool inSwap;

418 modifier swapping() { inSwap = true; _; inSwap = false; }

419

420 mapping(address => bool) isBlacklisted;

421

CBomber Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 420

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isBlacklisted" is
internal. Other possible visibility settings are public and private.

Source File
- CBomber.sol

Locations

419

420 mapping(address => bool) isBlacklisted;

421

422 constructor () Auth(msg.sender) {

423 router = IDEXRouter(0xa5E0829CaCEd8fFDD4De3c43696c57F7D7A678ff);

424

CBomber Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 266

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CBomber.sol

Locations

265 address[] memory path = new address[](2);

266 path[0] = WBNB;

267 path[1] = address(USDT);

268

269 router.swapExactETHForTokensSupportingFeeOnTransferTokens{value: msg.value}(

270

CBomber Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 267

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CBomber.sol

Locations

266 path[0] = WBNB;

267 path[1] = address(USDT);

268

269 router.swapExactETHForTokensSupportingFeeOnTransferTokens{value: msg.value}(

270 0,

271

CBomber Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 297

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CBomber.sol

Locations

296

297 if(shouldDistribute(shareholders[currentIndex])){

298 distributeDividend(shareholders[currentIndex]);

299 }

300

301

CBomber Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 298

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CBomber.sol

Locations

297 if(shouldDistribute(shareholders[currentIndex])){

298 distributeDividend(shareholders[currentIndex]);

299 }

300

301 gasUsed = gasUsed.add(gasLeft.sub(gasleft()));

302

CBomber Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 351

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CBomber.sol

Locations

350 function removeShareholder(address shareholder) internal {

351 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

352 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

353 shareholders.pop();

354 }

355

CBomber Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 351

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CBomber.sol

Locations

350 function removeShareholder(address shareholder) internal {

351 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

352 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

353 shareholders.pop();

354 }

355

CBomber Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 352

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CBomber.sol

Locations

351 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

352 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

353 shareholders.pop();

354 }

355 }

356

CBomber Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 556

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CBomber.sol

Locations

555 address[] memory path = new address[](2);

556 path[0] = address(this);

557 path[1] = WBNB;

558

559 uint256 balanceBefore = address(this).balance;

560

CBomber Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 557

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CBomber.sol

Locations

556 path[0] = address(this);

557 path[1] = WBNB;

558

559 uint256 balanceBefore = address(this).balance;

560

561

CBomber Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 628

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CBomber.sol

Locations

627 address[] memory path = new address[](2);

628 path[0] = WBNB;

629 path[1] = address(this);

630

631 router.swapExactETHForTokensSupportingFeeOnTransferTokens{value: amount}(

632

CBomber Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 629

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CBomber.sol

Locations

628 path[0] = WBNB;

629 path[1] = address(this);

630

631 router.swapExactETHForTokensSupportingFeeOnTransferTokens{value: amount}(

632 0,

633

CBomber Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 522

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- CBomber.sol

Locations

521 function getTotalFee(bool selling) public view returns (uint256) {

522 if(launchedAt + 1 >= block.number){ return feeDenominator.sub(1); }

523 if(selling && buybackMultiplierTriggeredAt.add(buybackMultiplierLength) >

block.timestamp){ return getMultipliedFee(); }

524 return totalFee;

525 }

526

CBomber Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 595

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- CBomber.sol

Locations

594 && autoBuybackEnabled

595 && autoBuybackBlockLast + autoBuybackBlockPeriod <= block.number

596 && address(this).balance >= autoBuybackAmount;

597 }

598

599

CBomber Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 621

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- CBomber.sol

Locations

620 }

621 autoBuybackBlockLast = block.number;

622 autoBuybackAccumulator = autoBuybackAccumulator.add(autoBuybackAmount);

623 if(autoBuybackAccumulator > autoBuybackCap){ autoBuybackEnabled = false; }

624 }

625

CBomber Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 649

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- CBomber.sol

Locations

648 autoBuybackBlockPeriod = _period;

649 autoBuybackBlockLast = block.number;

650 autoBuybackMultiplier = _autoBuybackMultiplier;

651 }

652

653

CBomber Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 665

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- CBomber.sol

Locations

664 function launch() internal {

665 launchedAt = block.number;

666 }

667

668 function setTxLimit(uint256 amount) external authorized {

669

CBomber Token | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

CBomber Token | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

