
BARFIGHT

Smart Contract
Audit Report

21 Sep 2022

BARFIGHT | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

BARFIGHT | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

BARFIGHT BFIGHT Ethereum

| Addresses

Contract address 0x6b91b72931993449fecC9d590D0d786a41588b1E

Contract deployer address 0xBE5f757b4c1dd913e9cD3a0CaD0F68C3DE62b6dD

| Project Website

https://barfight.io/

| Codebase

https://etherscan.io/address/0x6b91b72931993449fecC9d590D0d786a41588b1E#code

https://barfight.io/
https://etherscan.io/address/0x6b91b72931993449fecC9d590D0d786a41588b1E#code

BARFIGHT | Security Analysis

SUMMARY

$BFIGHT token is set to take the metaverse market by storm. This is virtual barfights! Design your patron’s
attire whether it be a wife beater singlet or suit, select your weapon of choice from bottles to tasers and get
swinging – winner takes all!

| Contract Summary

Documentation Quality

BARFIGHT provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by BARFIGHT with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 1093 and 1101.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 274, 286, 303, 304, 320, 334, 348, 362, 375, 384, 400, 421, 445, 476, 861, 877, 902, 935, 936, 957,
958, 981, 983, 1093, 1093, 1093, 1093, 1095, 1095, 1095, 1097, 1099, 1099, 1099, 1099, 1100, 1100,
1100, 1100, 1180, 1180, 1180, 1181, 1247, 1290, 1303, 1328, 1328, 1332, 1332, 1333, 1334, 1337, 1339,
1364, 1365, 1370, 1407 and 1421.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 25, 80, 106,
202, 254, 477, 508, 592, 677, 703 and 1070.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1248, 1473 and 1474.

BARFIGHT | Security Analysis

CONCLUSION

We have audited the BARFIGHT project released on September 2022 to discover issues and identify potential
security vulnerabilities in BARFIGHT Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the BARFIGHT smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set and out of bounds array access
which the index access expression can cause an exception in case of the use of an invalid array index value.

BARFIGHT | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

BARFIGHT | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

BARFIGHT | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

BARFIGHT | Security Analysis

SMART CONTRACT ANALYSIS

Started Tuesday Sep 20 2022 16:23:39 GMT+0000 (Coordinated Universal Time)

Finished Wednesday Sep 21 2022 01:39:20 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File BFIGHT.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 274

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

273 if (b > a) return (false, 0);

274 return (true, a - b);

275 }

276 }

277

278

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 286

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

285 // Gas optimization: this is cheaper than requiring 'a' not being zero, but the

286 // benefit is lost if 'b' is also tested.

287 // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522

288 if (a == 0) return (true, 0);

289 uint256 c = a * b;

290

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 303

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

302 if (b == 0) return (false, 0);

303 return (true, a / b);

304 }

305 }

306

307

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 304

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

303 return (true, a / b);

304 }

305 }

306

307 /**

308

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 320

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

319 /**

320 * @dev Returns the addition of two unsigned integers, reverting on

321 * overflow.

322 *

323 * Counterpart to Solidity's `+` operator.

324

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 334

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

333 /**

334 * @dev Returns the subtraction of two unsigned integers, reverting on

335 * overflow (when the result is negative).

336 *

337 * Counterpart to Solidity's `-` operator.

338

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 348

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

347 /**

348 * @dev Returns the multiplication of two unsigned integers, reverting on

349 * overflow.

350 *

351 * Counterpart to Solidity's `*` operator.

352

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 362

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

361 /**

362 * @dev Returns the integer division of two unsigned integers, reverting on

363 * division by zero. The result is rounded towards zero.

364 *

365 * Counterpart to Solidity's `/` operator.

366

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 375

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

374

375 /**

376 * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer

modulo),

377 * reverting when dividing by zero.

378 *

379

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 384

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

383 * Requirements:

384 *

385 * - The divisor cannot be zero.

386 */

387 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

388

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 400

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

399 *

400 * Requirements:

401 *

402 * - Subtraction cannot overflow.

403 */

404

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 421

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

420 * `revert` opcode (which leaves remaining gas untouched) while Solidity

421 * uses an invalid opcode to revert (consuming all remaining gas).

422 *

423 * Requirements:

424 *

425

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 445

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

444 *

445 * Counterpart to Solidity's `%` operator. This function uses a `revert`

446 * opcode (which leaves remaining gas untouched) while Solidity uses an

447 * invalid opcode to revert (consuming all remaining gas).

448 *

449

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 476

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

475 * via msg.sender and msg.data, they should not be accessed in such a direct

476 * manner, since when dealing with meta-transactions the account sending and

477 * paying for execution may not be the actual sender (as far as an application

478 * is concerned).

479 *

480

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 861

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

860 *

861 * - `spender` cannot be the zero address.

862 */

863 function increaseAllowance(address spender, uint256 addedValue) public virtual

returns (bool) {

864 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

865

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 877

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

876 * Requirements:

877 *

878 * - `spender` cannot be the zero address.

879 * - `spender` must have allowance for the caller of at least

880 * `subtractedValue`.

881

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 902

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

901 *

902 * - `sender` cannot be the zero address.

903 * - `recipient` cannot be the zero address.

904 * - `sender` must have a balance of at least `amount`.

905 */

906

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 935

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

934 *

935 * - `account` cannot be the zero address.

936 */

937 function _mint(address account, uint256 amount) internal virtual {

938 require(account != address(0), "ERC20: mint to the zero address");

939

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 936

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

935 * - `account` cannot be the zero address.

936 */

937 function _mint(address account, uint256 amount) internal virtual {

938 require(account != address(0), "ERC20: mint to the zero address");

939

940

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 957

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

956 *

957 * - `account` cannot be the zero address.

958 * - `account` must have at least `amount` tokens.

959 */

960 function _burn(address account, uint256 amount) internal virtual {

961

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 958

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

957 * - `account` cannot be the zero address.

958 * - `account` must have at least `amount` tokens.

959 */

960 function _burn(address account, uint256 amount) internal virtual {

961 require(account != address(0), "ERC20: burn from the zero address");

962

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 981

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

980 * This internal function is equivalent to `approve`, and can be used to

981 * e.g. set automatic allowances for certain subsystems, etc.

982 *

983 * Emits an {Approval} event.

984 *

985

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 983

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

982 *

983 * Emits an {Approval} event.

984 *

985 * Requirements:

986 *

987

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1093

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1092

1093 address payable marketingWallet =

payable(address(0x393d8d86E8b5aB2D653A3A94364FC40f9DB97a65)); // MARKETING WALLET

1094

1095

1096

1097

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1093

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1092

1093 address payable marketingWallet =

payable(address(0x393d8d86E8b5aB2D653A3A94364FC40f9DB97a65)); // MARKETING WALLET

1094

1095

1096

1097

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1093

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1092

1093 address payable marketingWallet =

payable(address(0x393d8d86E8b5aB2D653A3A94364FC40f9DB97a65)); // MARKETING WALLET

1094

1095

1096

1097

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1093

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1092

1093 address payable marketingWallet =

payable(address(0x393d8d86E8b5aB2D653A3A94364FC40f9DB97a65)); // MARKETING WALLET

1094

1095

1096

1097

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1095

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1094

1095

1096

1097

1098 mapping(address => bool) private _isExcludedFromFees;

1099

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1095

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1094

1095

1096

1097

1098 mapping(address => bool) private _isExcludedFromFees;

1099

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1095

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1094

1095

1096

1097

1098 mapping(address => bool) private _isExcludedFromFees;

1099

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1097

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1096

1097

1098 mapping(address => bool) private _isExcludedFromFees;

1099 mapping(address => bool) private _isExcludedFromLimit;

1100 mapping(address => bool) public _isBlackListed;

1101

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1099

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1098 mapping(address => bool) private _isExcludedFromFees;

1099 mapping(address => bool) private _isExcludedFromLimit;

1100 mapping(address => bool) public _isBlackListed;

1101 bool isTradingEnabled;

1102

1103

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1099

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1098 mapping(address => bool) private _isExcludedFromFees;

1099 mapping(address => bool) private _isExcludedFromLimit;

1100 mapping(address => bool) public _isBlackListed;

1101 bool isTradingEnabled;

1102

1103

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1099

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1098 mapping(address => bool) private _isExcludedFromFees;

1099 mapping(address => bool) private _isExcludedFromLimit;

1100 mapping(address => bool) public _isBlackListed;

1101 bool isTradingEnabled;

1102

1103

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1099

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1098 mapping(address => bool) private _isExcludedFromFees;

1099 mapping(address => bool) private _isExcludedFromLimit;

1100 mapping(address => bool) public _isBlackListed;

1101 bool isTradingEnabled;

1102

1103

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1100

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1099 mapping(address => bool) private _isExcludedFromLimit;

1100 mapping(address => bool) public _isBlackListed;

1101 bool isTradingEnabled;

1102

1103 // store addresses that a automatic market maker pairs. Any transfer *to* these

addresses

1104

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1100

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1099 mapping(address => bool) private _isExcludedFromLimit;

1100 mapping(address => bool) public _isBlackListed;

1101 bool isTradingEnabled;

1102

1103 // store addresses that a automatic market maker pairs. Any transfer *to* these

addresses

1104

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1100

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1099 mapping(address => bool) private _isExcludedFromLimit;

1100 mapping(address => bool) public _isBlackListed;

1101 bool isTradingEnabled;

1102

1103 // store addresses that a automatic market maker pairs. Any transfer *to* these

addresses

1104

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1100

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1099 mapping(address => bool) private _isExcludedFromLimit;

1100 mapping(address => bool) public _isBlackListed;

1101 bool isTradingEnabled;

1102

1103 // store addresses that a automatic market maker pairs. Any transfer *to* these

addresses

1104

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1180

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1179 require(newAddress != address(uniswapV2Router), "TOKEN: The router already has

that address");

1180 uniswapV2Router = IUniswapV2Router02(newAddress);

1181 address get_pair =

1182 IUniswapV2Factory(uniswapV2Router.factory()).getPair(address(this),

1183 uniswapV2Router.WETH());

1184

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1180

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1179 require(newAddress != address(uniswapV2Router), "TOKEN: The router already has

that address");

1180 uniswapV2Router = IUniswapV2Router02(newAddress);

1181 address get_pair =

1182 IUniswapV2Factory(uniswapV2Router.factory()).getPair(address(this),

1183 uniswapV2Router.WETH());

1184

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1180

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1179 require(newAddress != address(uniswapV2Router), "TOKEN: The router already has

that address");

1180 uniswapV2Router = IUniswapV2Router02(newAddress);

1181 address get_pair =

1182 IUniswapV2Factory(uniswapV2Router.factory()).getPair(address(this),

1183 uniswapV2Router.WETH());

1184

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1181

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1180 uniswapV2Router = IUniswapV2Router02(newAddress);

1181 address get_pair =

1182 IUniswapV2Factory(uniswapV2Router.factory()).getPair(address(this),

1183 uniswapV2Router.WETH());

1184 if (get_pair == address(0)) {

1185

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1247

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1246);

1247

1248 _setAutomatedMarketMakerPair(pair, value);

1249 }

1250

1251

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1290

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1289 totalSellFee = marketing + liquidity;

1290 require (totalSellFee <= 5, "max fees should be less than equal to 5%");

1291 }

1292

1293 function enableTrading () external onlyOwner {

1294

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1303

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1302 function setMarketingWallet(address newWallet) external onlyOwner {

1303 require (newWallet != (address(0)), "marketing wallet can't be a zero address");

1304 marketingWallet = payable(newWallet);

1305 }

1306

1307

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1328

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1327 function _transfer(

1328 address from,

1329 address to,

1330 uint256 amount

1331) internal override {

1332

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1328

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1327 function _transfer(

1328 address from,

1329 address to,

1330 uint256 amount

1331) internal override {

1332

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1332

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1331) internal override {

1332 require(from != address(0), "Token: transfer from the zero address");

1333 require(to != address(0), "Token: transfer to the zero address");

1334 require(

1335 !_isBlackListed[from] && !_isBlackListed[to],

1336

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1332

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1331) internal override {

1332 require(from != address(0), "Token: transfer from the zero address");

1333 require(to != address(0), "Token: transfer to the zero address");

1334 require(

1335 !_isBlackListed[from] && !_isBlackListed[to],

1336

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1333

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1332 require(from != address(0), "Token: transfer from the zero address");

1333 require(to != address(0), "Token: transfer to the zero address");

1334 require(

1335 !_isBlackListed[from] && !_isBlackListed[to],

1336 "Account is blacklisted"

1337

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1334

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1333 require(to != address(0), "Token: transfer to the zero address");

1334 require(

1335 !_isBlackListed[from] && !_isBlackListed[to],

1336 "Account is blacklisted"

1337);

1338

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1337

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1336 "Account is blacklisted"

1337);

1338

1339 if (amount == 0) {

1340 super._transfer(from, to, 0);

1341

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1339

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1338

1339 if (amount == 0) {

1340 super._transfer(from, to, 0);

1341 return;

1342 }

1343

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1364

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1363

1364 // if any account belongs to _isExcludedFromFee account then remove the fee

1365 if (_isExcludedFromFees[from] || _isExcludedFromFees[to]) {

1366 takeFee = false;

1367 }

1368

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1365

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1364 // if any account belongs to _isExcludedFromFee account then remove the fee

1365 if (_isExcludedFromFees[from] || _isExcludedFromFees[to]) {

1366 takeFee = false;

1367 }

1368

1369

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1370

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1369 if (takeFee) {

1370 require (isTradingEnabled, "Trading is not enabled yet");

1371 uint256 fees;

1372

1373

1374

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1407

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1406

1407 function swapAndSendToMarketing(uint256 tokens) private lockTheSwap {

1408 uint256 oldbalance = address(this).balance;

1409 swapTokensForEth(tokens);

1410 uint256 newBalance = address(this).balance - oldbalance;

1411

BARFIGHT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1421

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BFIGHT.sol

Locations

1420

1421 // capture the contract's current ETH balance.

1422 // this is so that we can capture exactly the amount of ETH that the

1423 // swap creates, and not make the liquidity event include any ETH that

1424 // has been manually sent to the contract

1425

BARFIGHT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 25

low SEVERITY
The current pragma Solidity directive is "">=0.5.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BFIGHT.sol

Locations

24 function decimals() external pure returns (uint8);

25 function totalSupply() external view returns (uint);

26 function balanceOf(address owner) external view returns (uint);

27 function allowance(address owner, address spender) external view returns (uint);

28

29

BARFIGHT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 80

low SEVERITY
The current pragma Solidity directive is "">=0.5.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BFIGHT.sol

Locations

79 function getPair(address tokenA, address tokenB) external view returns (address

pair);

80 function allPairs(uint) external view returns (address pair);

81 function allPairsLength() external view returns (uint);

82

83 function createPair(address tokenA, address tokenB) external returns (address pair);

84

BARFIGHT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 106

low SEVERITY
The current pragma Solidity directive is "">=0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BFIGHT.sol

Locations

105 uint deadline

106) external returns (uint amountA, uint amountB, uint liquidity);

107 function addLiquidityETH(

108 address token,

109 uint amountTokenDesired,

110

BARFIGHT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 202

low SEVERITY
The current pragma Solidity directive is "">=0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BFIGHT.sol

Locations

201 function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(

202 address token,

203 uint liquidity,

204 uint amountTokenMin,

205 uint amountETHMin,

206

BARFIGHT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 254

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BFIGHT.sol

Locations

253 /**

254 * @dev Returns the addition of two unsigned integers, with an overflow flag.

255 *

256 * _Available since v3.4._

257 */

258

BARFIGHT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 477

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BFIGHT.sol

Locations

476 * manner, since when dealing with meta-transactions the account sending and

477 * paying for execution may not be the actual sender (as far as an application

478 * is concerned).

479 *

480 * This contract is only required for intermediate, library-like contracts.

481

BARFIGHT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 508

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BFIGHT.sol

Locations

507 *

508 * This module is used through inheritance. It will make available the modifier

509 * `onlyOwner`, which can be applied to your functions to restrict their use to

510 * the owner.

511 */

512

BARFIGHT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 592

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BFIGHT.sol

Locations

591 /**

592 * @dev Moves `amount` tokens from the caller's account to `recipient`.

593 *

594 * Returns a boolean value indicating whether the operation succeeded.

595 *

596

BARFIGHT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 677

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BFIGHT.sol

Locations

676 */

677 function symbol() external view returns (string memory);

678

679 /**

680 * @dev Returns the decimals places of the token.

681

BARFIGHT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 703

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BFIGHT.sol

Locations

702 * TIP: For a detailed writeup see our guide

703 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-

mechanisms/226[How

704 * to implement supply mechanisms].

705 *

706 * We have followed general OpenZeppelin Contracts guidelines: functions revert

707

BARFIGHT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1070

low SEVERITY
The current pragma Solidity directive is ""^0.8.10"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BFIGHT.sol

Locations

1069 uint16 marketingFee;

1070 uint16 liquidityFee;

1071

1072 }

1073

1074

BARFIGHT | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1093

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "marketingWallet" is
internal. Other possible visibility settings are public and private.

Source File
- BFIGHT.sol

Locations

1092

1093 address payable marketingWallet =

payable(address(0x393d8d86E8b5aB2D653A3A94364FC40f9DB97a65)); // MARKETING WALLET

1094

1095

1096

1097

BARFIGHT | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1101

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isTradingEnabled" is
internal. Other possible visibility settings are public and private.

Source File
- BFIGHT.sol

Locations

1100 mapping(address => bool) public _isBlackListed;

1101 bool isTradingEnabled;

1102

1103 // store addresses that a automatic market maker pairs. Any transfer *to* these

addresses

1104 // could be subject to a maximum transfer amount

1105

BARFIGHT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1248

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BFIGHT.sol

Locations

1247

1248 _setAutomatedMarketMakerPair(pair, value);

1249 }

1250

1251 function _setAutomatedMarketMakerPair(address pair, bool value) private {

1252

BARFIGHT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1473

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BFIGHT.sol

Locations

1472

1473

1474 }

1475

BARFIGHT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1474

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BFIGHT.sol

Locations

1473

1474 }

1475

BARFIGHT | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

BARFIGHT | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

