
RabbitAI

Smart Contract
Audit Report

29 Jan 2023

RabbitAI | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

RabbitAI | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

RabbitAI Rabbit Ye... Binance Smart Chain

| Addresses

Contract address 0xfC64BB63E5a91250114d12fF0b9376b125660656

Contract deployer address 0xeeeB10e1462873850d88A2c335215E755E3aF157

| Project Website

https://www.rabbityear2023.net/

| Codebase

https://bscscan.com/address/0xfC64BB63E5a91250114d12fF0b9376b125660656#code

https://www.rabbityear2023.net/
https://bscscan.com/address/0xfC64BB63E5a91250114d12fF0b9376b125660656#code

RabbitAI | Security Analysis

SUMMARY

RabbitAI is a revolutionary new platform that brings the power of AI and blockchain technology together and is
operated as a DAO. With our AI-assisted dashboard, users can easily create and deploy complex blockchain
projects in minutes, without the need for expensive development costs or long waiting times. Plus, with our
unique token burn model, every time a user deploys a contract on our platform, they are contributing to the
stability and growth of the Rabbit token. Join the RabbitAI revolution! 1% tax.

| Contract Summary

Documentation Quality

RabbitAI provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by RabbitAI with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 110, 149 and 157.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 123, 123, 305, 333, 365, 365, 411, 423, 423, 427, 427, 428, 428, 430, 430, 431, 432, 512, 512, 568,
568, 569, 569, 586, 587, 587, 588, 588, 602, 604, 628, 628, 630 and 634.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 6.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 528, 529, 587, 588 and 588.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 469.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 565.

RabbitAI | Security Analysis

CONCLUSION

We have audited the RabbitAI project released on January 2023 to discover issues and identify potential
security vulnerabilities in RabbitAI Project. This process is used to find technical issues and security loopholes
which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the RabbitAI smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, state variable visibility is not set, and the Potential use of
"block.number" as a source of randomness. We recommended specifying a fixed compiler version to ensure
that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-
level verification of the code, and don't use any of those environment variables as sources of randomness and
be aware that use of these variables introduces a certain level of trust into miners.

RabbitAI | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

RabbitAI | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

RabbitAI | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

RabbitAI | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Jan 28 2023 10:30:55 GMT+0000 (Coordinated Universal Time)

Finished Sunday Jan 29 2023 22:54:50 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File RabbitAI.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 123

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

122 uint8 constant private _decimals = 9;

123 uint256 constant private _tTotal = startingSupply * 10**_decimals;

124

125 struct Fees {

126 uint16 buyFee;

127

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 123

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

122 uint8 constant private _decimals = 9;

123 uint256 constant private _tTotal = startingSupply * 10**_decimals;

124

125 struct Fees {

126 uint16 buyFee;

127

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 305

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

304 if (_allowances[sender][msg.sender] != type(uint256).max) {

305 _allowances[sender][msg.sender] -= amount;

306 }

307

308 return _transfer(sender, recipient, amount);

309

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 333

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

332 if (timeSinceLastPair != 0) {

333 require(block.timestamp - timeSinceLastPair > 3 days, "3 Day cooldown.");

334 }

335 require(!lpPairs[pair], "Pair already added to list.");

336 lpPairs[pair] = true;

337

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 365

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

364 function getCirculatingSupply() public view returns (uint256) {

365 return (_tTotal - (balanceOf(DEAD) + balanceOf(address(0))));

366 }

367

368

369

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 365

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

364 function getCirculatingSupply() public view returns (uint256) {

365 return (_tTotal - (balanceOf(DEAD) + balanceOf(address(0))));

366 }

367

368

369

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 411

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

410 "Cannot exceed maximums.");

411 require(buyFee + sellFee <= maxRoundtripTax, "Cannot exceed roundtrip maximum.");

412 _taxRates.buyFee = buyFee;

413 _taxRates.sellFee = sellFee;

414 _taxRates.transferFee = transferFee;

415

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 423

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

422 function getTokenAmountAtPriceImpact(uint256 priceImpactInHundreds) external view

returns (uint256) {

423 return((balanceOf(lpPair) * priceImpactInHundreds) / masterTaxDivisor);

424 }

425

426 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

427

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 423

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

422 function getTokenAmountAtPriceImpact(uint256 priceImpactInHundreds) external view

returns (uint256) {

423 return((balanceOf(lpPair) * priceImpactInHundreds) / masterTaxDivisor);

424 }

425

426 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

427

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 427

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

426 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

427 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

428 swapAmount = (_tTotal * amountPercent) / amountDivisor;

429 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

430 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

431

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 427

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

426 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

427 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

428 swapAmount = (_tTotal * amountPercent) / amountDivisor;

429 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

430 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

431

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 428

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

427 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

428 swapAmount = (_tTotal * amountPercent) / amountDivisor;

429 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

430 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

431 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

432

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 428

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

427 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

428 swapAmount = (_tTotal * amountPercent) / amountDivisor;

429 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

430 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

431 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

432

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 430

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

429 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

430 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

431 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

432 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

433 }

434

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 430

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

429 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

430 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

431 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

432 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

433 }

434

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 431

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

430 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

431 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

432 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

433 }

434

435

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 432

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

431 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

432 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

433 }

434

435 function setPriceImpactSwapAmount(uint256 priceImpactSwapPercent) external

onlyOwner {

436

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 512

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

511 uint256 swapAmt = swapAmount;

512 if (piContractSwapsEnabled) { swapAmt = (balanceOf(lpPair) * piSwapPercent) /

masterTaxDivisor; }

513 if (contractTokenBalance >= swapAmt) { contractTokenBalance = swapAmt; }

514 contractSwap(contractTokenBalance);

515 }

516

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 512

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

511 uint256 swapAmt = swapAmount;

512 if (piContractSwapsEnabled) { swapAmt = (balanceOf(lpPair) * piSwapPercent) /

masterTaxDivisor; }

513 if (contractTokenBalance >= swapAmt) { contractTokenBalance = swapAmt; }

514 contractSwap(contractTokenBalance);

515 }

516

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 568

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

567 allowedPresaleExclusion = false;

568 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

569 swapAmount = (balanceOf(lpPair) * 30) / 10000;

570 launchStamp = block.timestamp;

571 }

572

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 568

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

567 allowedPresaleExclusion = false;

568 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

569 swapAmount = (balanceOf(lpPair) * 30) / 10000;

570 launchStamp = block.timestamp;

571 }

572

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 569

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

568 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

569 swapAmount = (balanceOf(lpPair) * 30) / 10000;

570 launchStamp = block.timestamp;

571 }

572

573

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 569

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

568 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

569 swapAmount = (balanceOf(lpPair) * 30) / 10000;

570 launchStamp = block.timestamp;

571 }

572

573

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 586

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

585 require(accounts.length == amounts.length, "Lengths do not match.");

586 for (uint16 i = 0; i < accounts.length; i++) {

587 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

588 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

589 }

590

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 587

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

586 for (uint16 i = 0; i < accounts.length; i++) {

587 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

588 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

589 }

590 }

591

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 587

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

586 for (uint16 i = 0; i < accounts.length; i++) {

587 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

588 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

589 }

590 }

591

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 588

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

587 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

588 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

589 }

590 }

591

592

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 588

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

587 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

588 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

589 }

590 }

591

592

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 602

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

601 }

602 _tOwned[from] -= amount;

603 uint256 amountReceived = (takeFee) ? takeTaxes(from, buy, sell, amount) : amount;

604 _tOwned[to] += amountReceived;

605 emit Transfer(from, to, amountReceived);

606

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 604

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

603 uint256 amountReceived = (takeFee) ? takeTaxes(from, buy, sell, amount) : amount;

604 _tOwned[to] += amountReceived;

605 emit Transfer(from, to, amountReceived);

606 if (!_hasLiqBeenAdded) {

607 _checkLiquidityAdd(from, to);

608

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 628

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

627 || block.chainid == 56)) { currentFee = 4500; }

628 uint256 feeAmount = amount * currentFee / masterTaxDivisor;

629 if (feeAmount > 0) {

630 _tOwned[address(this)] += feeAmount;

631 emit Transfer(from, address(this), feeAmount);

632

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 628

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

627 || block.chainid == 56)) { currentFee = 4500; }

628 uint256 feeAmount = amount * currentFee / masterTaxDivisor;

629 if (feeAmount > 0) {

630 _tOwned[address(this)] += feeAmount;

631 emit Transfer(from, address(this), feeAmount);

632

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 630

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

629 if (feeAmount > 0) {

630 _tOwned[address(this)] += feeAmount;

631 emit Transfer(from, address(this), feeAmount);

632 }

633

634

RabbitAI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 634

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RabbitAI.sol

Locations

633

634 return amount - feeAmount;

635 }

636 }

637

RabbitAI | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.9.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- RabbitAI.sol

Locations

5 // SPDX-License-Identifier: MIT

6 pragma solidity >=0.6.0 <0.9.0;

7

8 interface IERC20 {

9 function totalSupply() external view returns (uint256);

10

RabbitAI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 110

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "lpPairs" is internal.
Other possible visibility settings are public and private.

Source File
- RabbitAI.sol

Locations

109 mapping (address => uint256) private _tOwned;

110 mapping (address => bool) lpPairs;

111 uint256 private timeSinceLastPair = 0;

112 mapping (address => mapping (address => uint256)) private _allowances;

113 mapping (address => bool) private _liquidityHolders;

114

RabbitAI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 149

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwap" is internal.
Other possible visibility settings are public and private.

Source File
- RabbitAI.sol

Locations

148

149 bool inSwap;

150 bool public contractSwapEnabled = false;

151 uint256 public swapThreshold;

152 uint256 public swapAmount;

153

RabbitAI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 157

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "protections" is
internal. Other possible visibility settings are public and private.

Source File
- RabbitAI.sol

Locations

156 bool public _hasLiqBeenAdded = false;

157 Protections protections;

158 uint256 public launchStamp;

159

160 event ContractSwapEnabledUpdated(bool enabled);

161

RabbitAI | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 469

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using
"tx.origin" as a security control might cause a situation where a user inadvertently authorizes a smart contract
to perform an action on their behalf. It is recommended to use "msg.sender" instead.

Source File
- RabbitAI.sol

Locations

468 && to != _owner

469 && tx.origin != _owner

470 && !_liquidityHolders[to]

471 && !_liquidityHolders[from]

472 && to != DEAD

473

RabbitAI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 528

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RabbitAI.sol

Locations

527 address[] memory path = new address[](2);

528 path[0] = address(this);

529 path[1] = dexRouter.WETH();

530

531 try dexRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(

532

RabbitAI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 529

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RabbitAI.sol

Locations

528 path[0] = address(this);

529 path[1] = dexRouter.WETH();

530

531 try dexRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(

532 contractTokenBalance,

533

RabbitAI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 587

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RabbitAI.sol

Locations

586 for (uint16 i = 0; i < accounts.length; i++) {

587 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

588 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

589 }

590 }

591

RabbitAI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 588

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RabbitAI.sol

Locations

587 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

588 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

589 }

590 }

591

592

RabbitAI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 588

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RabbitAI.sol

Locations

587 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

588 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

589 }

590 }

591

592

RabbitAI | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 565

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- RabbitAI.sol

Locations

564 }

565 try protections.setLaunch(lpPair, uint32(block.number), uint64(block.timestamp),

_decimals) {} catch {}

566 tradingEnabled = true;

567 allowedPresaleExclusion = false;

568 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

569

RabbitAI | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

RabbitAI | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

