PenguinToken

Smart Contract
Audit Report

@ SYSFIXED 01 Apr 2021

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

PenguinToken | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

PenguinToken | Security Analysis

Project name

Token ticker

Blockchain

PenguinToken

PEFI

Avalanche

| Addresses

Contract address

0xe896cdeaac9615145c0ca09c8cd5c25bced6384c

Contract deployer address

0xA239403fC6A076256E203e15122B6456C3db6f19

| Project Website

https://www.penguinfinance.org/

| Codebase

https://snowtrace.io/address/0xe896cdeaac9615145¢c0ca09c8cd5c25hced6384c#code

https://www.penguinfinance.org/
https://snowtrace.io/address/0xe896cdeaac9615145c0ca09c8cd5c25bced6384c#code

@ SYSFIXED PenguinToken | Security Analysis

SUMMARY

Penguin Finance is one of the most extensive DeFi protocols on the Avalanche Network. Due to its low gas
fees, fast transaction speeds, and high levels of decentralization, it is increasingly attractive for DeFi users
tired of paying thousands of dollars in fees for interacting with a dApp.

| Contract Summary

Documentation Quality
PenguinToken provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

e Standard solidity basecode and rules are already followed by PenguinToken with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 715.

e SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 9, 35, 114,
330 and 637.

e SWC-120 | It is recommended to use external sources of randomness via oracles on lines 873 and 946.

@ SYSFIXED PenguinToken | Security Analysis

CONCLUSION

We have audited the PenguinToken project released in March 2022 to discover issues and identify potential
security vulnerabilities in PenguinToken Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the PenguinToken smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are a floating
pragma is set, a state variable visibility is not set, and weak sources of randomness. Specifying a fixed
compiler version is recommended to ensure that the bytecode produced does not vary between builds. This is
especially important if you rely on bytecode-level verification of the code. The environment variable
"block.number" looks like it might be used as a source of randomness. Note that the values of variables like
coinbase, gaslimit, block number, and timestamp are predictable and can be manipulated by a malicious
miner. Also, keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment
variables as sources of randomness, and be aware that using these variables introduces a certain level of trust
in miners.

@‘S\FSFHEU PenguinToken | Security Analysis

AUDIT RESULT

Article Category Description Result
Functions and state variables visibility should be
- SWC-100 . . - ISSUE
Default Visibility set explicitly. Visibility levels should be specified
SWC-108 . FOUND
consciously.
Integer Overflow If unchecked math is used, all math operations
SWC-101 PASS
and Underflow should be safe from overflows and underflows.
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 L i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
: SWC-106) PASS
Instruction has funds belonging to users.

Check effect interaction pattern should be followed
Reentrancy SWC-107)) PASS
if the code performs recursive call.

Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a
Assert Violation PASS

SWC-123 failing assert statement.

Deprecated Solidity

. SWC-111 Deprecated built-in functions should never be used. PASS
Functions

Delegate call to Delegatecalls should only be allowed to trusted
SWC-112

PASS
Untrusted Callee addresses.

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

PenguinToken | Security Analysis

Execution of the code should never be blocked by a
specific contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only
once during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

When inheriting multiple contracts, especially if they have

identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

ISSUE
FOUND

PASS

PASS

PASS

PASS

£ SYSFIXED

PenguinToken | Security Analysis

Typographical A typographical error can occur for example when the intent
SWC-129) o 4 PASS
Error of a defined operation is to sum a number to a variable.
. Malicious actors can use the Right-To-Left-Override unicode
Override control .
h ¢ SWC-130 character to force RTL text rendering and confuse users as PASS
character
to the real intent of a contract.
. SWC-131 Unused variables are allowed in Solidity and they do not pose
Unused variables) o PASS
SWC-135 a direct security issue.
Unexpected Ether Contracts can behave erroneously when they strictly assume
SWC-132 . PASS
balance a specific Ether balance.
Hash Collisions Using abi.encodePacked() with multiple variable length
. SWC-133 . L Ey PASS
Variable arguments can, in certain situations, lead to a hash collision.
Hardcoded gas The transfer() and send() functions forward a fixed amount
SWC-134 PASS
amount of 2300 gas.
Unencrypted It is a common misconception that private type variables
SWC-136 PASS

Private Data

cannot be read.

@STSFHE“ PenguinToken | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Mar 31 2021 08:44:39 GMT+0000 (Coordinated Universal Time)
Finished Thursday Apr 01 2021 19:27:40 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File PenguinToken.sol

| Detected Issues

ID Title Severity | Status
SWC-103 | AFLOATING PRAGMA IS SET. low acknowledged
SWC-103 | AFLOATING PRAGMA IS SET. low acknowledged
SWC-103 | A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 | AFLOATING PRAGMA IS SET. low acknowledged
SWC-103 | A FLOATING PRAGMA IS SET. low acknowledged
SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
SWC-120 low acknowledged
RANDOMNESS.
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
SWC-120 low acknowledged
RANDOMNESS.

@‘S\FSFHEU PenguinToken | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 9

low SEVERITY

The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PenguinToken.sol

Locations
8
9 pragma solidity >=0.6.0 <0.8.0;
10
11 /*
12 * @lev Provides information about the current execution context, including the
13

@‘S\FSFHEU PenguinToken | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 35

low SEVERITY

The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PenguinToken.sol

Locations
34
35 pragma solidity >=0.6.0 <O0.8.0;
36
37 [**
38 * @lev Interface of the ERC20 standard as defined in the ElP.
39

@‘S\FSFHEU PenguinToken | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 114

low SEVERITY

The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PenguinToken.sol

Locations
113
114 pragma solidity >=0.6.0 <0.8.0;
115
116 /**
117 * @lev Wappers over Solidity's arithnetic operations with added overfl ow
118

@‘S\FSFHEU PenguinToken | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 330

low SEVERITY

The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PenguinToken.sol

Locations

329
330 pragma solidity >=0.6.0 <0.8.0;
331
332
333
334

@‘S\FSFHEU PenguinToken | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 637

low SEVERITY

The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PenguinToken.sol

Locations
636
637 pragma solidity >=0.6.0 <0.8.0;
638
639 [**
640 * @lev Contract nodul e which provides a basic access control mechani sm where
641

@S\"SH}I{ED PenguinToken | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 715

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "minterAddress" is
internal. Other possible visibility settings are public and private.

Source File
- PenguinToken.sol

Locations

714 /1 M nter Address which woul d eventual |y be set to address(0)
715 address m nter Addr ess;

716
717 constructor (address _m nterAddress) public {
718 m nt er Address = _ni nt er Addr ess;

719

@‘S\FSHREU PenguinToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE

OF RANDOMNESS.
LINE 873

low SEVERITY

The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- PenguinToken.sol

Locations

872 {

873 require(bl ockNurmber < bl ock. nunber, "PEFI::getPriorVotes: not yet determ ned");
874

875 ui nt 32 nCheckpoi nts = nunCheckpoi nts[account];

876 i f (nCheckpoints == 0) {

877

@‘S\FSHREU PenguinToken | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE

OF RANDOMNESS.
LINE 946

low SEVERITY

The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- PenguinToken.sol

Locations

945 {

946 ui nt 32 bl ockNunber = saf e32(bl ock. nunber, "PEFI:: witeCheckpoint: block nunmber
exceeds 32 bits");

947

948 i f (nCheckpoints > 0 & & checkpoi nt s[del egat ee] [nCheckpoints - 1].fronBl ock ==
bl ockNumber) {

949 checkpoi nt s[del egat ee] [nCheckpoi nts - 1].votes = newNot es;

950

@‘S\"SH}I{ED PenguinToken | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@‘S\"SH}I{ED PenguinToken | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

