
Gains Network

Smart Contract
Audit Report

28 Oct 2021

Gains Network | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Gains Network | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Gains Network GNS Polygon Matic

| Addresses

Contract address 0xE5417Af564e4bFDA1c483642db72007871397896

Contract deployer address 0xC66FbE50Dd33c9AAdd65707F7088D597C86fE00F

| Project Website

https://gains.trade/

| Codebase

https://polygonscan.com/address/0xE5417Af564e4bFDA1c483642db72007871397896#code

https://gains.trade/
https://polygonscan.com/address/0xE5417Af564e4bFDA1c483642db72007871397896#code

Gains Network | Security Analysis

SUMMARY

Gains Network is developing gTrade, a liquidity-efficient, powerful, and user-friendly decentralized leveraged
trading platform.

| Contract Summary

Documentation Quality

Gains Network provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Gains Network with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 1414, 1518 and 1658.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 9, 34, 112,
327, 633, 678, 976 and 1166.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 1715, 1716,
1723 and 1731.

Gains Network | Security Analysis

CONCLUSION

We have audited the Gains Network project released in October 2021 to discover issues and identify potential
security vulnerabilities in Gains Network Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the NamaFile smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are that a floating
pragma is set, a state variable visibility is not set, and weak sources of randomness. Specifying a fixed
compiler version is recommended to ensure that the bytecode produced does not vary between builds. This is
especially important if you rely on bytecode-level verification of the code. The environment variable
"block.number" looks like it might be used as a source of randomness. Note that the values of variables like
coinbase, gaslimit, block number, and timestamp are predictable and can be manipulated by a malicious
miner. Also, keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment
variables as sources of randomness, and be aware that using these variables introduces a certain level of trust
in miners.

Gains Network | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Gains Network | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Gains Network | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Gains Network | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Oct 27 2021 04:42:48 GMT+0000 (Coordinated Universal Time)

Finished Thursday Oct 28 2021 06:45:43 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File GainsNetworkToken.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

Gains Network | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 9

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GainsNetworkToken.sol

Locations

8

9 pragma solidity >=0.6.0 <0.8.0;

10

11 /*

12 * @dev Provides information about the current execution context, including the

13

Gains Network | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 34

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GainsNetworkToken.sol

Locations

33

34 pragma solidity >=0.6.0 <0.8.0;

35

36 /**

37 * @dev Interface of the ERC20 standard as defined in the EIP.

38

Gains Network | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 112

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GainsNetworkToken.sol

Locations

111

112 pragma solidity >=0.6.0 <0.8.0;

113

114 /**

115 * @dev Wrappers over Solidity's arithmetic operations with added overflow

116

Gains Network | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 327

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GainsNetworkToken.sol

Locations

326

327 pragma solidity >=0.6.0 <0.8.0;

328

329

330

331

Gains Network | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 633

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GainsNetworkToken.sol

Locations

632

633 pragma solidity >=0.6.0 <0.8.0;

634

635

636 /**

637

Gains Network | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 678

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GainsNetworkToken.sol

Locations

677

678 pragma solidity >=0.6.0 <0.8.0;

679

680 /**

681 * @dev Library for managing

682

Gains Network | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 976

low SEVERITY
The current pragma Solidity directive is "">=0.6.2<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GainsNetworkToken.sol

Locations

975

976 pragma solidity >=0.6.2 <0.8.0;

977

978 /**

979 * @dev Collection of functions related to the address type

980

Gains Network | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1166

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GainsNetworkToken.sol

Locations

1165

1166 pragma solidity >=0.6.0 <0.8.0;

1167

1168

1169

1170

Gains Network | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1414

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inited" is internal.
Other possible visibility settings are public and private.

Source File
- GainsNetworkToken.sol

Locations

1413 contract Initializable {

1414 bool inited = false;

1415

1416 modifier initializer() {

1417 require(!inited, "already inited");

1418

Gains Network | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1518

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "nonces" is internal.
Other possible visibility settings are public and private.

Source File
- GainsNetworkToken.sol

Locations

1517);

1518 mapping(address => uint256) nonces;

1519

1520 /*

1521 * Meta transaction structure.

1522

Gains Network | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1658

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "grantRequests" is
internal. Other possible visibility settings are public and private.

Source File
- GainsNetworkToken.sol

Locations

1657 }

1658 mapping(address => GrantRequest) grantRequests;

1659 uint constant public MIN_GRANT_REQUEST_DELAY = 45000; // 1 day

1660

1661 event GrantRequestInitiated(bytes32[] indexed roles, address indexed account, uint

indexed block);

1662

Gains Network | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1715

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- GainsNetworkToken.sol

Locations

1714 require(!grantRequestInitiated(account), "Grant request already initiated for this

account.");

1715 grantRequests[account] = GrantRequest(roles, block.number);

1716 emit GrantRequestInitiated(roles, account, block.number);

1717 }

1718

1719

Gains Network | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1716

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- GainsNetworkToken.sol

Locations

1715 grantRequests[account] = GrantRequest(roles, block.number);

1716 emit GrantRequestInitiated(roles, account, block.number);

1717 }

1718

1719 // Cancels a request to grant `role` to `account`

1720

Gains Network | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1723

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- GainsNetworkToken.sol

Locations

1722 delete grantRequests[account];

1723 emit GrantRequestCanceled(account, block.number);

1724 }

1725

1726 // Grant the roles precised in the request to account (must wait for the timelock)

1727

Gains Network | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1731

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- GainsNetworkToken.sol

Locations

1730 GrantRequest memory r = grantRequests[account];

1731 require(block.number >= r.initiated + MIN_GRANT_REQUEST_DELAY, "You must wait for

the minimum delay after initiating a request.");

1732

1733 for(uint i = 0; i < r.roles.length; i++){

1734 _setupRole(r.roles[i], account);

1735

Gains Network | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Gains Network | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

