
Parsiq Token

Smart Contract
Audit Report

12 Jun 2021

Parsiq Token | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Parsiq Token | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Parsiq Token PRQ Binance Smart Chain

| Addresses

Contract address 0xd21d29b38374528675c34936bf7d5dd693d2a577

Contract deployer address 0x3DEcac3cB963Ba79DFC5C7F89f4dd717178478dF

| Project Website

https://www.parsiq.net/

| Codebase

https://bscscan.com/address/0xd21d29b38374528675c34936bf7d5dd693d2a577#code

https://www.parsiq.net/
https://bscscan.com/address/0xd21d29b38374528675c34936bf7d5dd693d2a577#code

Parsiq Token | Security Analysis

SUMMARY

Welcome to PARSIQ Network The main purpose of our Tsunami API is to get historical, real-time and raw data
from the blockchains almost instantaneously. We have indexed tens of millions of blocks across numerous
blockchains, such as Ethereum, BNB Smart Chain, Avalanche, Polygon and Arbitrum, with hundreds of millions
of transactions, calls, events, from block zero to this exact second. All this information is available within
milliseconds to you no matter what your request is! To get familiar with Tsunami API, read through this doc
and try it out at API Reference.

| Contract Summary

Documentation Quality

Parsiq Token provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Parsiq Token with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 1.
SWC-107 | It is recommended to use a reentrancy lock, reentrancy weaknesses detected on lines 404.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 404.
SWC-113 SWC-128 | It is recommended to implement the contract logic to handle failed calls and block
gas limit on lines 404.
SWC-116 | It is recommended to use oracles for block values as a proxy for time on lines 87, 772, 947,
948, 773, 950, 600 and 930.

Parsiq Token | Security Analysis

CONCLUSION

We have audited the Parsiq Token project released on June 2021 to discover issues and identify potential
security vulnerabilities in Parsiq Token Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the Parsiq Token smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some no pragma
is set, a call to a user-supplied address is executed, a control flow decision is made based on The
block.timestamp environment variable, and requirement violation. Choosing what version of Solidity is used for
compilation consciously is recommended. Currently, no version is set in the Solidity file. A call to a user-
supplied address is executed, external message call to an address specified by the caller is executed. Note
that the callee account might contain arbitrary code and could re-reentry function within this contract.
ReeReenteringe contract in an intermediate state may lead to unexpected behavior. Ensure no state
modifications are executed after this call, and reentrancy guards are in place. Multiple calls are executed in the
same transaction, and this call is executed following another call within the same transaction. The call may
never get executed if an initial call fails permanently. This might be caused intentionally by a malicious callee.
If possible, refactor the code such that each transaction only executes one external call or ensure that all
callees can be trusted (i.e. they’re part of your codebase). Requirement violation, the requirement was violated
in a nested call, and the call was reverted as a result. Ensure valid inputs are provided to the nested call (for
instance, via passed arguments).

Parsiq Token | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

ISSUE
FOUND

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Parsiq Token | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

ISSUE
FOUND

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations.
ISSUE

FOUND

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Parsiq Token | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Parsiq Token | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Jun 11 2021 18:30:20 GMT+0000 (Coordinated Universal Time)

Finished Saturday Jun 12 2021 12:14:07 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File ParsiqToken.sol

| Detected Issues

ID Title Severity Status

SWC-103 NO PRAGMA IS SET. low acknowledged

SWC-107 A CALL TO A USER-SUPPLIED ADDRESS IS EXECUTED. low acknowledged

SWC-113 MULTIPLE CALLS ARE EXECUTED IN THE SAME TRANSACTION. low acknowledged

SWC-116
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.

low acknowledged

SWC-116
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.

low acknowledged

SWC-116
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.

low acknowledged

SWC-116
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.

low acknowledged

SWC-116
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.

low acknowledged

SWC-116
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.

low acknowledged

SWC-116
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.

low acknowledged

SWC-116
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.

low acknowledged

SWC-123 REQUIREMENT VIOLATION. low acknowledged

Parsiq Token | Security Analysis

SWC-103 | NO PRAGMA IS SET.
LINE 1

low SEVERITY
It is recommended to make a conscious choice on what version of Solidity is used for compilation. Currently
no version is set in the Solidity file.

Source File
- ParsiqToken.sol

Locations

0

1 /**

2 *Submitted for verification at BscScan.com on 2021-06-11

3 */

4

5

Parsiq Token | Security Analysis

SWC-107 | A CALL TO A USER-SUPPLIED ADDRESS IS
EXECUTED.
LINE 404

low SEVERITY
An external message call to an address specified by the caller is executed. Note that the callee account might
contain arbitrary code and could re-enter any function within this contract. Reentering the contract in an
intermediate state may lead to unexpected behaviour. Make sure that no state modifications are executed
after this call and/or reentrancy guards are in place.

Source File
- ParsiqToken.sol

Locations

403 // solhint-disable-next-line avoid-low-level-calls

404 (bool success, bytes memory returndata) = target.call{ value: value }(data);

405 return _verifyCallResult(success, returndata, errorMessage);

406 }

407

408

Parsiq Token | Security Analysis

SWC-113 | MULTIPLE CALLS ARE EXECUTED IN THE SAME
TRANSACTION.
LINE 404

low SEVERITY
This call is executed following another call within the same transaction. It is possible that the call never gets
executed if a prior call fails permanently. This might be caused intentionally by a malicious callee. If possible,
refactor the code such that each transaction only executes one external call or make sure that all callees can
be trusted (i.e. they’re part of your own codebase).

Source File
- ParsiqToken.sol

Locations

403 // solhint-disable-next-line avoid-low-level-calls

404 (bool success, bytes memory returndata) = target.call{ value: value }(data);

405 return _verifyCallResult(success, returndata, errorMessage);

406 }

407

408

Parsiq Token | Security Analysis

SWC-116 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.
LINE 87

low SEVERITY
The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- ParsiqToken.sol

Locations

86 uint256 c = a + b;

87 require(c >= a, "SafeMath: addition overflow");

88 return c;

89 }

90

91

Parsiq Token | Security Analysis

SWC-116 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.
LINE 772

low SEVERITY
The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- ParsiqToken.sol

Locations

771) public onlyGovernanceBoard returns (bool) {

772 require(block.timestamp > reviewPeriods[from], "Review period is not elapsed");

773 require(block.timestamp <= decisionPeriods[from], "Decision period expired");

774

775 _transfer(from, to, value);

776

Parsiq Token | Security Analysis

SWC-116 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.
LINE 947

low SEVERITY
The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- ParsiqToken.sol

Locations

946 // Need to unwrap modifiers to eliminate Stack too deep error

947 require(decisionPeriods[owner] < block.timestamp, "Account is being reviewed");

948 require(decisionPeriods[spender] < block.timestamp, "Account is being reviewed");

949 require(!paused || msg.sender == governanceBoard, "Pausable: paused");

950 require(deadline >= block.timestamp, "ParsiqToken: EXPIRED");

951

Parsiq Token | Security Analysis

SWC-116 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.
LINE 948

low SEVERITY
The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- ParsiqToken.sol

Locations

947 require(decisionPeriods[owner] < block.timestamp, "Account is being reviewed");

948 require(decisionPeriods[spender] < block.timestamp, "Account is being reviewed");

949 require(!paused || msg.sender == governanceBoard, "Pausable: paused");

950 require(deadline >= block.timestamp, "ParsiqToken: EXPIRED");

951 bytes32 digest =

952

Parsiq Token | Security Analysis

SWC-116 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.
LINE 773

low SEVERITY
The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- ParsiqToken.sol

Locations

772 require(block.timestamp > reviewPeriods[from], "Review period is not elapsed");

773 require(block.timestamp <= decisionPeriods[from], "Decision period expired");

774

775 _transfer(from, to, value);

776 emit GovernedTransfer(from, to, value);

777

Parsiq Token | Security Analysis

SWC-116 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.
LINE 950

low SEVERITY
The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- ParsiqToken.sol

Locations

949 require(!paused || msg.sender == governanceBoard, "Pausable: paused");

950 require(deadline >= block.timestamp, "ParsiqToken: EXPIRED");

951 bytes32 digest =

952 keccak256(

953 abi.encodePacked(

954

Parsiq Token | Security Analysis

SWC-116 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.
LINE 600

low SEVERITY
The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- ParsiqToken.sol

Locations

599 modifier onlyResolved(address account) {

600 require(decisionPeriods[account] < block.timestamp, "Account is being reviewed");

601 _;

602 }

603

604

Parsiq Token | Security Analysis

SWC-116 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.
LINE 930

low SEVERITY
The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- ParsiqToken.sol

Locations

929 require(recipient != address(0), "ERC20: transfer to the zero address");

930 require(decisionPeriods[recipient] < block.timestamp, "Account is being reviewed");

931

932 _balances[recipient] = _balances[recipient].add(amount);

933 emit Transfer(msg.sender, recipient, amount);

934

Parsiq Token | Security Analysis

SWC-123 | REQUIREMENT VIOLATION.
LINE 404

low SEVERITY
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments).

Source File
- ParsiqToken.sol

Locations

403 // solhint-disable-next-line avoid-low-level-calls

404 (bool success, bytes memory returndata) = target.call{ value: value }(data);

405 return _verifyCallResult(success, returndata, errorMessage);

406 }

407

408

Parsiq Token | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Parsiq Token | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

