oxyo2 # Smart Contract Audit Report # **TABLE OF CONTENTS** ### | Audited Details - Audited Project - Blockchain - Addresses - Project Website - Codebase ### Summary - Contract Summary - Audit Findings Summary - Vulnerabilities Summary ### Conclusion ### | Audit Results ### Smart Contract Analysis - Detected Vulnerabilities ### Disclaimer ### About Us # **AUDITED DETAILS** # | Audited Project | Project name | Token ticker | Blockchain | | |--------------|--------------|---------------------|--| | oxyo2 | OX2 | Binance Smart Chain | | # Addresses | Contract address | 0x4ff08f7f52ddba3e78c7754331c1bae737b0c50d | | |---------------------------|--|--| | Contract deployer address | 0x857EDa47dcf61c09522eD1454Ba24937919625DD | | ### Project Website https://oxyo2.org/ ### Codebase https://bscscan.com/address/0x4ff08f7f52ddba3e78c7754331c1bae737b0c50d#code ### **SUMMARY** OXYO2 is decentralized cryptocurrency which will be used as a utility token among oxyO2 ecosystem. The maximum supply of OXYO2 is 1 billion, which will be minted and distributed among potential oxyO2 users during various processes. oxyO2 will use the finest and safest payment process to increase financial security and transparency. ### Contract Summary #### **Documentation Quality** oxyo2 provides a very good documentation with standard of solidity base code. • The technical description is provided clearly and structured and also dont have any high risk issue. #### **Code Quality** The Overall quality of the basecode is standard. Standard solidity basecode and rules are already followed by oxyo2 with the discovery of several low issues. #### **Test Coverage** Test coverage of the project is 100% (Through Codebase) ### Audit Findings Summary • SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 7, 57, 185, 217, 240, 251, 288, 309, 319, 477, 487, 517 and 535. # CONCLUSION We have audited the oxyo2 Project released on oxyo2 2022 to discover issues and identify potential security vulnerabilities in oxyo2 Project. This process is used to find technical issues and security loopholes which might be found in the smart contract. The security audit report provides satisfactory results with low-risk issues. The issues found in the NamaFile smart contract code do not pose a considerable risk. The writing of the contract is close to the standard of writing contracts in general. The low-risk issues found are some floating pragma is set. The current pragma Solidity directive is ""^0.8.10"". Specifying a fixed compiler version is recommended to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code. # **AUDIT RESULT** | Article | Category | Description | Result | | |--------------------------------------|--------------------|---|--------|--| | Default Visibility | SWC-100
SWC-108 | Functions and state variables visibility should be set explicitly. Visibility levels should be specified consciously. | | | | Integer Overflow
and Underflow | SWC-101 | If unchecked math is used, all math operations should be safe from overflows and underflows. | PASS | | | Outdated Compiler
Version | SWC-102 | It is recommended to use a recent version of the Solidity compiler. | PASS | | | Floating Pragma | SWC-103 | Contracts should be deployed with the same compiler version and flags that they have been tested thoroughly. | ISSHE | | | Unchecked Call
Return Value | SWC-104 | The return value of a message call should be checked. | PASS | | | Unprotected Ether
Withdrawal | SWC-105 | Due to missing or insufficient access controls, malicious parties can withdraw from the contract. | PASS | | | SELFDESTRUCT
Instruction | SWC-106 | The contract should not be self-destructible while it has funds belonging to users. | PASS | | | Reentrancy | SWC-107 | Check effect interaction pattern should be followed if the code performs recursive call. | PASS | | | Uninitialized
Storage Pointer | SWC-109 | Uninitialized local storage variables can point to unexpected storage locations in the contract. | PASS | | | Assert Violation | SWC-110
SWC-123 | Properly functioning code should never reach a failing assert statement. | PASS | | | Deprecated Solidity Functions | SWC-111 | Deprecated built-in functions should never be used. | PASS | | | Delegate call to
Untrusted Callee | SWC-112 | Delegatecalls should only be allowed to trusted addresses. | PASS | | | DoS (Denial of Service) | SWC-113
SWC-128 | Execution of the code should never be blocked by a specific contract state unless required. | | | |--|-------------------------------|---|------|--| | Race Conditions | SWC-114 | Race Conditions and Transactions Order Dependency should not be possible. | | | | Authorization through tx.origin | SWC-115 | tx.origin should not be used for authorization. | PASS | | | Block values as a proxy for time | SWC-116 | Block numbers should not be used for time calculations. | | | | Signature Unique
ID | SWC-117
SWC-121
SWC-122 | Signed messages should always have a unique id. A transaction hash should not be used as a unique id. | | | | Incorrect
Constructor Name | SWC-118 | Constructors are special functions that are called only once during the contract creation. | | | | Shadowing State
Variable | SWC-119 | State variables should not be shadowed. | | | | Weak Sources of
Randomness | SWC-120 | Random values should never be generated from Chain Attributes or be predictable. | | | | Write to Arbitrary
Storage Location | SWC-124 | The contract is responsible for ensuring that only authorized user or contract accounts may write to sensitive storage locations. | | | | Incorrect
Inheritance Order | SWC-125 | When inheriting multiple contracts, especially if they have identical functions, a developer should carefully specify inheritance in the correct order. The rule of thumb is to inherit contracts from more /general/ to more /specific/. | | | | Insufficient Gas
Griefing | SWC-126 | Insufficient gas griefing attacks can be performed on contracts which accept data and use it in a sub-call on another contract. | | | | Arbitrary Jump
Function | SWC-127 | As Solidity doesnt support pointer arithmetics, it is impossible to change such variable to an arbitrary value. | PASS | | | Typographical
Error | SWC-129 | A typographical error can occur for example when the intent of a defined operation is to sum a number to a variable. | | | |-------------------------------|--------------------|--|------|--| | Override control
character | SWC-130 | Malicious actors can use the Right-To-Left-Override unicode character to force RTL text rendering and confuse users as to the real intent of a contract. | | | | Unused variables | SWC-131
SWC-135 | Unused variables are allowed in Solidity and they do not pose a direct security issue. | | | | Unexpected Ether balance | SWC-132 | Contracts can behave erroneously when they strictly assume a specific Ether balance. | | | | Hash Collisions
Variable | SWC-133 | Using abi.encodePacked() with multiple variable length arguments can, in certain situations, lead to a hash collision. | | | | Hardcoded gas
amount | SWC-134 | The transfer() and send() functions forward a fixed amount of 2300 gas. | | | | Unencrypted
Private Data | SWC-136 | It is a common misconception that private type variables cannot be read. | PASS | | # **SMART CONTRACT ANALYSIS** | Started | Saturday Apr 30 2022 11:19:18 GMT+0000 (Coordinated Universal Time) | | | |------------------|---|--|--| | Finished | Sunday May 01 2022 08:13:33 GMT+0000 (Coordinated Universal Time) | | | | Mode | Standard | | | | Main Source File | Token.sol | | | # Detected Issues | ID | Title | Severity | Status | |---------|---------------------------|----------|--------------| | SWC-103 | A FLOATING PRAGMA IS SET. | low | acknowledged | | SWC-103 | A FLOATING PRAGMA IS SET. | low | acknowledged | | SWC-103 | A FLOATING PRAGMA IS SET. | low | acknowledged | | SWC-103 | A FLOATING PRAGMA IS SET. | low | acknowledged | | SWC-103 | A FLOATING PRAGMA IS SET. | low | acknowledged | | SWC-103 | A FLOATING PRAGMA IS SET. | low | acknowledged | | SWC-103 | A FLOATING PRAGMA IS SET. | low | acknowledged | | SWC-103 | A FLOATING PRAGMA IS SET. | low | acknowledged | | SWC-103 | A FLOATING PRAGMA IS SET. | low | acknowledged | | SWC-103 | A FLOATING PRAGMA IS SET. | low | acknowledged | | SWC-103 | A FLOATING PRAGMA IS SET. | low | acknowledged | | SWC-103 | A FLOATING PRAGMA IS SET. | low | acknowledged | | SWC-103 | A FLOATING PRAGMA IS SET. | low | acknowledged | LINE 7 #### **low SEVERITY** The current pragma Solidity directive is ""^0.8.10"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code. #### Source File - Token.sol ``` pragma solidity ^0.8.10; library Strings { bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef"; 10 11 ``` LINE 57 #### **low SEVERITY** The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code. #### Source File - Token.sol ``` 56 57 pragma solidity ^0.8.0; 58 59 library ECDSA { 60 enum RecoverError { 61 ``` **LINE 185** #### **low SEVERITY** The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code. #### Source File - Token.sol ``` 184 185 pragma solidity ^0.8.0; 186 187 188 library Counters { 189 ``` **LINE 217** #### **low SEVERITY** The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code. #### Source File - Token.sol ``` 216 217 pragma solidity ^0.8.0; 218 219 library Math { 220 221 ``` **LINE 240** #### **low SEVERITY** The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code. #### Source File - Token.sol ``` 239 240 pragma solidity ^0.8.0; 241 abstract contract Context { 242 function _msgSender() internal view virtual returns (address) { 243 return msg.sender; 244 ``` **LINE 251** #### **low SEVERITY** The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code. #### Source File - Token.sol ``` 250 251 pragma solidity ^0.8.0; 252 253 abstract contract Ownable is Context { 254 address private _owner; 255 ``` **LINE 288** #### **low SEVERITY** The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code. #### Source File - Token.sol ``` 287 288 pragma solidity ^0.8.0; 289 290 291 interface IERC20 { 292 ``` **LINE 309** #### **low SEVERITY** The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code. #### Source File - Token.sol ``` 308 309 pragma solidity ^0.8.0; 310 311 interface IERC20Metadata is IERC20 { 312 313 ``` **LINE 319** #### **low SEVERITY** The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code. #### Source File - Token.sol ``` 318 319 pragma solidity ^0.8.0; 320 321 contract ERC20 is Context, IERC20, IERC20Metadata { 322 mapping(address => uint256) private _balances; 323 ``` **LINE 477** #### **low SEVERITY** The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code. #### Source File - Token.sol ``` 476 477 pragma solidity ^0.8.0; 478 479 abstract contract ERC20Permit is ERC20 { 480 using Counters for Counters.Counter; 481 ``` **LINE 487** #### **low SEVERITY** The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code. #### Source File - Token.sol ``` 486 487 pragma solidity ^0.8.0; 488 489 abstract contract ERC20Votes is ERC20Permit { 490 struct Checkpoint { 491 ``` **LINE 517** #### **low SEVERITY** The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code. #### Source File - Token.sol ``` 516 517 pragma solidity ^0.8.0; 518 519 abstract contract ERC20Burnable is Context, ERC20 { 520 521 ``` **LINE 535** #### **low SEVERITY** The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code. #### Source File - Token.sol ``` 534 535 pragma solidity ^0.8.0; 536 537 contract Token is ERC20, ERC20Burnable, Ownable, ERC20Permit, ERC20Votes { 538 constructor() ERC20("oxyo2", "OX2") ERC20Permit("oxyo2") { 539 ``` ### **DISCLAIMER** This report is subject to the terms and conditions (including without limitation, description of services, confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions provided to you ("Customer" or the "Company") in connection with the Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in each instance. This report is not, nor should be considered, an "endorsement" or "disapproval" of any particular project or team. This report is not, nor should be considered, an indication of the economics or value of any "product" or "asset" created by any team or project that contracts Sysfixed to perform a security assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies proprietors, business, business model, or legal compliance. This is a limited report on our findings based on our analysis, in accordance with good industry practice as of the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms based on smart contracts, the details of which are set out in this report. In order to get a full view of our analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and producing this report, it is important to note that you should not rely on this report and cannot claim against us on the basis of what it says or doesn't say, or how we produced it, and it is important for you to conduct your own independent investigations before making any decisions. We go into more detail on this in the below disclaimer below – please make sure to read it in full. This report should not be used in any way to make decisions around investment or involvement with any particular project. This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report represents an extensive assessing process intending to help our customers increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology. This report is provided for information purposes only and on a non-reliance basis and does not constitute investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other representatives) (Sysfixed) owe no duty of care. ### **ABOUT US** Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts. Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and improvement of our tools and techniques used to fortify your code.