
MetaGold Financial

Smart Contract
Audit Report

30 Jan 2023

MetaGold Financial | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

MetaGold Financial | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

MetaGold Financial MGF Binance Smart Chain

| Addresses

Contract address 0x1f77f06333B89b94389b9214cA476dd5107Af92a

Contract deployer address 0xdF19f7f9c8179dbf73e752DFcFb247ad4232E416

| Project Website

https://t.me/metagoldrewards

| Codebase

https://bscscan.com/address/0x1f77f06333B89b94389b9214cA476dd5107Af92a#code

https://t.me/metagoldrewards
https://bscscan.com/address/0x1f77f06333B89b94389b9214cA476dd5107Af92a#code

MetaGold Financial | Security Analysis

SUMMARY

MetaGold 2.0: The First Digital Gold Certificate of Deposit. MetaGold Financial offers a unique opportunity to
experience insane returns with a simple click of a button. This cutting-edge platform, which is the latest
iteration of digital gold, provides you with a proven path to high returns on investment. An affiliate program
with 10% commission. Stable Coin Staking Utility for income. 75% APY Staking and Blockchain affiliate
program.

| Contract Summary

Documentation Quality

MetaGold Financial provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by MetaGold Financial with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 101, 103, 110, 115, 122, 145, 158, 168, 169, 180, 190, 431, 454, 487, 490, 512, 515, 541, 543, 593,
696, 696, 800, 800, 972 and 972.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 855, 856, 857, 901, 902, 903, 986, 987, 988, 1289, 1290, 1302 and
1303.

MetaGold Financial | Security Analysis

CONCLUSION

We have audited the MetaGold Financial project released on January 2023 to discover issues and identify
potential security vulnerabilities in MetaGold Financial Project. This process is used to find technical issues
and security loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the MetaGold Financial smart contract code do not pose a considerable risk. The writing of
the contract is close to the standard of writing contracts in general. The low-risk issues found are some
arithmetic operation issues, and out of bounds array access which the index access expression can cause an
exception in case of the use of an invalid array index value.

MetaGold Financial | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

MetaGold Financial | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

MetaGold Financial | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

MetaGold Financial | Security Analysis

SMART CONTRACT ANALYSIS

Started Sunday Jan 29 2023 12:40:30 GMT+0000 (Coordinated Universal Time)

Finished Monday Jan 30 2023 23:10:35 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File MetaGold.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 101

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

100 function mul(int256 a, int256 b) internal pure returns (int256) {

101 int256 c = a * b;

102 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

103 require((b == 0) || (c / b == a));

104 return c;

105

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 103

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

102 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

103 require((b == 0) || (c / b == a));

104 return c;

105 }

106

107

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 110

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

109 require(b != -1 || a != MIN_INT256);

110 return a / b;

111 }

112

113

114

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 115

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

114 function sub(int256 a, int256 b) internal pure returns (int256) {

115 int256 c = a - b;

116 require((b >= 0 && c <= a) || (b < 0 && c > a));

117 return c;

118 }

119

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 122

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

121 function add(int256 a, int256 b) internal pure returns (int256) {

122 int256 c = a + b;

123 require((b >= 0 && c >= a) || (b < 0 && c < a));

124 return c;

125 }

126

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 145

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

144 function add(uint256 a, uint256 b) internal pure returns (uint256) {

145 uint256 c = a + b;

146 require(c >= a, "SafeMath: addition overflow");

147

148 return c;

149

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 158

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

157 require(b <= a, errorMessage);

158 uint256 c = a - b;

159

160 return c;

161 }

162

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 168

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

167

168 uint256 c = a * b;

169 require(c / a == b, "SafeMath: multiplication overflow");

170

171 return c;

172

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 169

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

168 uint256 c = a * b;

169 require(c / a == b, "SafeMath: multiplication overflow");

170

171 return c;

172 }

173

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 180

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

179 require(b > 0, errorMessage);

180 uint256 c = a / b;

181 return c;

182 }

183

184

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 190

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

189 require(b != 0, errorMessage);

190 return a % b;

191 }

192 }

193

194

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 431

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

430 address owner = _msgSender();

431 _approve(owner, spender, allowance(owner, spender) + addedValue);

432 return true;

433 }

434

435

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 454

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

453 unchecked {

454 _approve(owner, spender, currentAllowance - subtractedValue);

455 }

456

457 return true;

458

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 487

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

486 unchecked {

487 _balances[from] = fromBalance - amount;

488 // Overflow not possible: the sum of all balances is capped by totalSupply, and the

sum is preserved by

489 // decrementing then incrementing.

490 _balances[to] += amount;

491

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 490

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

489 // decrementing then incrementing.

490 _balances[to] += amount;

491 }

492

493 emit Transfer(from, to, amount);

494

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 512

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

511

512 _totalSupply += amount;

513 unchecked {

514 // Overflow not possible: balance + amount is at most totalSupply + amount, which

is checked above.

515 _balances[account] += amount;

516

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 515

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

514 // Overflow not possible: balance + amount is at most totalSupply + amount, which

is checked above.

515 _balances[account] += amount;

516 }

517 emit Transfer(address(0), account, amount);

518

519

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 541

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

540 unchecked {

541 _balances[account] = accountBalance - amount;

542 // Overflow not possible: amount <= accountBalance <= totalSupply.

543 _totalSupply -= amount;

544 }

545

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 543

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

542 // Overflow not possible: amount <= accountBalance <= totalSupply.

543 _totalSupply -= amount;

544 }

545

546 emit Transfer(account, address(0), amount);

547

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 593

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

592 unchecked {

593 _approve(owner, spender, currentAllowance - amount);

594 }

595 }

596 }

597

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 696

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

695 uint256 public marketingFee = 10; //1%

696 uint256 public swapTokensAtAmount = 100000 * 10 ** 18;

697 uint256 public burnFee = 10; //1%

698 uint256 public bonusDirectTransaction = 1000; //100%

699 uint256 public bonusSwapTransactionToReferrer = 10; //1%

700

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 696

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

695 uint256 public marketingFee = 10; //1%

696 uint256 public swapTokensAtAmount = 100000 * 10 ** 18;

697 uint256 public burnFee = 10; //1%

698 uint256 public bonusDirectTransaction = 1000; //100%

699 uint256 public bonusSwapTransactionToReferrer = 10; //1%

700

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 800

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

799 _mustDoFee[uniswapV2Pair] = true;

800 _mint(msg.sender, _supply * (10 ** decimals()));

801 }

802

803 //to recieve ETH from uniswapV2Router when swaping

804

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 800

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

799 _mustDoFee[uniswapV2Pair] = true;

800 _mint(msg.sender, _supply * (10 ** decimals()));

801 }

802

803 //to recieve ETH from uniswapV2Router when swaping

804

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 972

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

971 require(nr > block.timestamp, "Next rebase must be in near future");

972 require(nr < block.timestamp + 7 *lockpayTwentyFourHours, "Next rebase must be

maximum in 7 days");

973 nextLockpayRebase = nr;

974 }

975

976

MetaGold Financial | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 972

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaGold.sol

Locations

971 require(nr > block.timestamp, "Next rebase must be in near future");

972 require(nr < block.timestamp + 7 *lockpayTwentyFourHours, "Next rebase must be

maximum in 7 days");

973 nextLockpayRebase = nr;

974 }

975

976

MetaGold Financial | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 855

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaGold.sol

Locations

854 address[] memory path = new address[](2);

855 path[0] = bnb_address;

856 path[1] = meta_address;

857 uint256 minamount = uniswapV2Router.getAmountsOut(msg.value, path)[1];

858 uint256 origAmount = minamount;

859

MetaGold Financial | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 856

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaGold.sol

Locations

855 path[0] = bnb_address;

856 path[1] = meta_address;

857 uint256 minamount = uniswapV2Router.getAmountsOut(msg.value, path)[1];

858 uint256 origAmount = minamount;

859 uint256 reward = minamount.mul(bonusSwapTransactionToReferrer).div(1000);

860

MetaGold Financial | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 857

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaGold.sol

Locations

856 path[1] = meta_address;

857 uint256 minamount = uniswapV2Router.getAmountsOut(msg.value, path)[1];

858 uint256 origAmount = minamount;

859 uint256 reward = minamount.mul(bonusSwapTransactionToReferrer).div(1000);

860 if(referral == msg.sender) {

861

MetaGold Financial | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 901

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaGold.sol

Locations

900 address[] memory path = new address[](2);

901 path[0] = bnb_address;

902 path[1] = meta_address;

903 uint256 minamount = uniswapV2Router.getAmountsOut(amount, path)[1];

904

905

MetaGold Financial | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 902

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaGold.sol

Locations

901 path[0] = bnb_address;

902 path[1] = meta_address;

903 uint256 minamount = uniswapV2Router.getAmountsOut(amount, path)[1];

904

905 rewardReferrer = 0;

906

MetaGold Financial | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 903

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaGold.sol

Locations

902 path[1] = meta_address;

903 uint256 minamount = uniswapV2Router.getAmountsOut(amount, path)[1];

904

905 rewardReferrer = 0;

906 if(referral != address(0)) {

907

MetaGold Financial | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 986

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaGold.sol

Locations

985 address[] memory path = new address[](2);

986 path[0] = bnb_address;

987 path[1] = meta_address;

988 return uniswapV2Router.getAmountsOut(inAmount, path)[1];

989 }

990

MetaGold Financial | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 987

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaGold.sol

Locations

986 path[0] = bnb_address;

987 path[1] = meta_address;

988 return uniswapV2Router.getAmountsOut(inAmount, path)[1];

989 }

990

991

MetaGold Financial | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 988

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaGold.sol

Locations

987 path[1] = meta_address;

988 return uniswapV2Router.getAmountsOut(inAmount, path)[1];

989 }

990

991 /**

992

MetaGold Financial | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1289

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaGold.sol

Locations

1288 address[] memory path = new address[](2);

1289 path[0] = address(this);

1290 path[1] = uniswapV2Router.WETH();

1291

1292 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

1293

MetaGold Financial | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1290

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaGold.sol

Locations

1289 path[0] = address(this);

1290 path[1] = uniswapV2Router.WETH();

1291

1292 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

1293 tokenAmount,

1294

MetaGold Financial | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1302

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaGold.sol

Locations

1301 address[] memory path = new address[](2);

1302 path[0] = address(this);

1303 path[1] = uniswapV2Router.WETH();

1304

1305 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

1306

MetaGold Financial | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1303

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaGold.sol

Locations

1302 path[0] = address(this);

1303 path[1] = uniswapV2Router.WETH();

1304

1305 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

1306 tokenAmount,

1307

MetaGold Financial | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

MetaGold Financial | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

