
STP

Smart Contract
Audit Report

06 Jun 2019

STP | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

STP | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

STP STPT Ethereum

| Addresses

Contract address 0xDe7D85157d9714EADf595045CC12Ca4A5f3E2aDb

Contract deployer address 0x0E5b92089f5f8D4cFA17fCe6035227344C8f0Dd9

| Project Website

https://stp.network/

| Codebase

https://etherscan.io/address/0xDe7D85157d9714EADf595045CC12Ca4A5f3E2aDb#code

https://stp.network/
https://etherscan.io/address/0xDe7D85157d9714EADf595045CC12Ca4A5f3E2aDb#code

STP | Security Analysis

SUMMARY

STPT is an ecosystem optimzed for DAOs. It launched Verse Network, a full suite of native tools and
infrastructures facilitating efficient decentralized decision-making for users, communities and organizations to
streamline the creation and management of DAOs. Through Verse Network, users can access a suite of no-
code DAO tools to launch and manage their DAOs on a range of blockchains.

| Contract Summary

Documentation Quality

STPT provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by STPT with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 63, 65 and 66.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 5.
SWC-107 | It is recommended to use a reentrancy lock, reentrancy weaknesses detected on lines 154.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 154.
SWC-111 | It is recommended to use alternatives to the deprecated constructions on lines 11, 12, 13, 84,
91 and 142.

STP | Security Analysis

CONCLUSION

We have audited the STP project released on August 2019 to discover issues and identify potential security
vulnerabilities in STP Project. This process is used to find technical issues and security loopholes which might
be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the STP smart contract code do not pose a considerable risk. The writing of the contract is
close to the standard of writing contracts in general. The low-risk issues found are floating pragma is set, all to
a user-supplied address is executed, state variable visibility is not set, use of the "constant" state mutability
modifier is deprecated, and requirement violation. We remind using "constant" as a state mutability modifier in
the function "balanceOf" is disallowed as of Solidity version 0.5.0. Use "view" instead. . It is recommended to
specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
especially important if you rely on bytecode-level verification of the code.

STP | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

ISSUE
FOUND

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used.
ISSUE

FOUND

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

STP | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

STP | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

STP | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Jun 05 2019 13:17:45 GMT+0000 (Coordinated Universal Time)

Finished Thursday Jun 06 2019 21:06:39 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File STPTToken.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-107 A CALL TO A USER-SUPPLIED ADDRESS IS EXECUTED. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-111
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS
DEPRECATED.

low acknowledged

SWC-123 REQUIREMENT VIOLATION. low acknowledged

STP | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 5

low SEVERITY
The current pragma Solidity directive is ""^0.4.21"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- STPTToken.sol

Locations

4

5 pragma solidity ^0.4.21;

6 // --

7 // ERC Token Standard #20 Interface

8 // https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md

9

STP | Security Analysis

SWC-107 | A CALL TO A USER-SUPPLIED ADDRESS IS
EXECUTED.
LINE 154

low SEVERITY
An external message call to an address specified by the caller is executed. Note that the callee account might
contain arbitrary code and could re-enter any function within this contract. Reentering the contract in an
intermediate state may lead to unexpected behaviour. Make sure that no state modifications are executed
after this call and/or reentrancy guards are in place.

Source File
- STPTToken.sol

Locations

153 emit Approval(msg.sender, spender, tokens);

154 ApproveAndCallFallBack(spender).receiveApproval(msg.sender, tokens, this, data);

155 return true;

156 }

157

158

STP | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 63

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_totalSupply" is
internal. Other possible visibility settings are public and private.

Source File
- STPTToken.sol

Locations

62 uint8 public decimals;

63 uint _totalSupply;

64

65 mapping(address => uint) balances;

66 mapping(address => mapping(address => uint)) allowed;

67

STP | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 65

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "balances" is internal.
Other possible visibility settings are public and private.

Source File
- STPTToken.sol

Locations

64

65 mapping(address => uint) balances;

66 mapping(address => mapping(address => uint)) allowed;

67

68

69

STP | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 66

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "allowed" is internal.
Other possible visibility settings are public and private.

Source File
- STPTToken.sol

Locations

65 mapping(address => uint) balances;

66 mapping(address => mapping(address => uint)) allowed;

67

68

69 // --

70

STP | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 11

low SEVERITY
Using "constant" as a state mutability modifier in function "totalSupply" is disallowed as of Solidity version
0.5.0. Use "view" instead.

Source File
- STPTToken.sol

Locations

10 contract ERC20Interface {

11 function totalSupply() public constant returns (uint);

12 function balanceOf(address tokenOwner) public constant returns (uint balance);

13 function allowance(address tokenOwner, address spender) public constant returns

(uint remaining);

14 function transfer(address to, uint tokens) public returns (bool success);

15

STP | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 12

low SEVERITY
Using "constant" as a state mutability modifier in function "balanceOf" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- STPTToken.sol

Locations

11 function totalSupply() public constant returns (uint);

12 function balanceOf(address tokenOwner) public constant returns (uint balance);

13 function allowance(address tokenOwner, address spender) public constant returns

(uint remaining);

14 function transfer(address to, uint tokens) public returns (bool success);

15 function approve(address spender, uint tokens) public returns (bool success);

16

STP | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 13

low SEVERITY
Using "constant" as a state mutability modifier in function "allowance" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- STPTToken.sol

Locations

12 function balanceOf(address tokenOwner) public constant returns (uint balance);

13 function allowance(address tokenOwner, address spender) public constant returns

(uint remaining);

14 function transfer(address to, uint tokens) public returns (bool success);

15 function approve(address spender, uint tokens) public returns (bool success);

16 function transferFrom(address from, address to, uint tokens) public returns (bool

success);

17

STP | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 84

low SEVERITY
Using "constant" as a state mutability modifier in function "totalSupply" is disallowed as of Solidity version
0.5.0. Use "view" instead.

Source File
- STPTToken.sol

Locations

83 // --

84 function totalSupply() public constant returns (uint) {

85 return _totalSupply - balances[address(0)];

86 }

87

88

STP | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 91

low SEVERITY
Using "constant" as a state mutability modifier in function "balanceOf" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- STPTToken.sol

Locations

90 // --

91 function balanceOf(address tokenOwner) public constant returns (uint balance) {

92 return balances[tokenOwner];

93 }

94

95

STP | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.
LINE 142

low SEVERITY
Using "constant" as a state mutability modifier in function "allowance" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- STPTToken.sol

Locations

141 // --

142 function allowance(address tokenOwner, address spender) public constant returns

(uint remaining) {

143 return allowed[tokenOwner][spender];

144 }

145

146

STP | Security Analysis

SWC-123 | REQUIREMENT VIOLATION.
LINE 154

low SEVERITY
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments).

Source File
- STPTToken.sol

Locations

153 emit Approval(msg.sender, spender, tokens);

154 ApproveAndCallFallBack(spender).receiveApproval(msg.sender, tokens, this, data);

155 return true;

156 }

157

158

STP | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

STP | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

