
Super Moon Lotto

Smart Contract
Audit Report

02 Dec 2022

Super Moon Lotto | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Super Moon Lotto | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Super Moon Lotto SML Binance Smart Chain

| Addresses

Contract address 0x4d43e0b1eC8D829A4bB6ABaa8C2C41bF3c580A7F

Contract deployer address 0x0fbC2C9B1C65662Cdd969C5466414552833D50a5

| Project Website

https://supermoonlotto.com/

| Codebase

https://bscscan.com/address/0x4d43e0b1eC8D829A4bB6ABaa8C2C41bF3c580A7F#code

https://supermoonlotto.com/
https://bscscan.com/address/0x4d43e0b1eC8D829A4bB6ABaa8C2C41bF3c580A7F#code

Super Moon Lotto | Security Analysis

SUMMARY

New token mechanism is here! We aim to be the Biggest Lotto Game in the world ! Holders have FREE LOTTO
TICKETS EVERY WEEK to win the weekly Jackpot.
1) 0.1 BTC added to the Jackpot monthly.
2) 4% of total transaction volume from the previous week will be added to weekly Jackpot (self generating)!
3) a pre-reserved number of tokens from Super Moon Lotto
***IF NO ONE WINS THE JACKPOT, we will take 5 balls away in the next draw, and we will keep taking 5 balls
away until our holders hit the jackpot ***

| Contract Summary

Documentation Quality

Super Moon Lotto provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Super Moon Lotto with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 729, 734, 736, 737, 738 and
739.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 104, 136, 159, 160, 195, 231, 458, 702, 703, 741, 742, 768, 769, 899, 901, 949, 956, 958, 969, 1020,
1056, 1062, 1068, 1074, 1292, 1294, 1296, 1300, 1303, 1305, 1309, 1310, 1312, 1321, 1323, 1326, 1327,
1329, 1334, 1335, 1301, 1321, 1326 and 1327.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 5.
SWC-110 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new REVERT
opcode in the EVM on lines 727, 900, 901, 950, 959, 960, 1021, 1022, 1023, 1204, 1205, 1304, 1311,
1323, 1326, 1327, 1328, 1341, 1342, 1343, 1344 and 1345.

Super Moon Lotto | Security Analysis

CONCLUSION

We have audited the Super Moon Lotto project released on December 2022 to discover issues and identify
potential security vulnerabilities in Super Moon Lotto Project. This process is used to find technical issues and
security loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the code on Super Moon Lotto smart contract do not pose a considerable risk. The writing
of the contract is close to the standard of writing contracts in general. The low-risk issues found are some
arithmetic operation issues, a floating pragma is set, a state variable visibility is not set, a public state variable
with array type causing reachable exception by default and out of bounds array access which the index access
expression can cause an exception in case of the use of an invalid array index value.

Super Moon Lotto | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegate calls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Super Moon Lotto | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

Super Moon Lotto | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Dec 01 2022 22:28:27 GMT+0000 (Coordinated Universal Time)

Finished Friday Dec 02 2022 23:37:41 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File SuperMoonLotto.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "--" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110
PUBLIC STATE VARIABLE WITH ARRAY TYPE CAUSING REACHABLE
EXCEPTION BY DEFAULT.

low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 104

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

103 function add(uint256 a, uint256 b) internal pure returns (uint256) {

104 uint256 c = a + b;

105 require(c >= a, "SafeMath: addition overflow");

106

107 return c;

108

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 136

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

135 require(b <= a, errorMessage);

136 uint256 c = a - b;

137

138 return c;

139 }

140

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 159

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

158

159 uint256 c = a * b;

160 require(c / a == b, "SafeMath: multiplication overflow");

161

162 return c;

163

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 160

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

159 uint256 c = a * b;

160 require(c / a == b, "SafeMath: multiplication overflow");

161

162 return c;

163 }

164

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 195

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

194 require(b > 0, errorMessage);

195 uint256 c = a / b;

196 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

197

198 return c;

199

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 231

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

230 require(b != 0, errorMessage);

231 return a % b;

232 }

233 }

234

235

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 458

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

457 _owner = address(0);

458 _lockTime = block.timestamp + time;

459 emit OwnershipTransferred(_owner, address(0));

460 }

461

462

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 702

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

701 uint256 private constant MAX = ~uint256(0);

702 uint256 private _tTotal = 1000000 * 10**6 * 10**9; //CHANGE_OPTIONAL: total supply

of token. Recommended to keep unchanged

703 uint256 private _rTotal = (MAX - (MAX % _tTotal));

704 uint256 private _tFeeTotal;

705

706

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 703

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

702 uint256 private _tTotal = 1000000 * 10**6 * 10**9; //CHANGE_OPTIONAL: total supply

of token. Recommended to keep unchanged

703 uint256 private _rTotal = (MAX - (MAX % _tTotal));

704 uint256 private _tFeeTotal;

705

706 string private _name = "Super Moon Lotto"; //CHANGE_REQUIRED: name of token

707

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 741

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

740

741 uint256 public _maxTxAmount = 20000 * 10**6 * 10**9;

//CHANGE_OPTIONAL: max amount of tokens that can be transferred per transaction

742 uint256 private numTokensSellToAddToLiquidity = 20000 * 10**6 * 10**9;

//CHANGE_OPTIONAL: minimum number of tokens in contract to be sent to Pancakeswap pool

743 // uint256 public _jpPortion = 300 * 10**6 * 10**9;

744 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

745

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 742

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

741 uint256 public _maxTxAmount = 20000 * 10**6 * 10**9;

//CHANGE_OPTIONAL: max amount of tokens that can be transferred per transaction

742 uint256 private numTokensSellToAddToLiquidity = 20000 * 10**6 * 10**9;

//CHANGE_OPTIONAL: minimum number of tokens in contract to be sent to Pancakeswap pool

743 // uint256 public _jpPortion = 300 * 10**6 * 10**9;

744 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

745 event SwapAndLiquifyEnabledUpdated(bool enabled);

746

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 768

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

767 constructor (address dexAddress) {

768 _rOwned[_msgSender()] = _rTotal.div(10**2).mul(90);

769 _rOwned[_moonJPAddress] = _rTotal.div(10**2).mul(10);

770

771 IUniswapV2Router02 _uniswapV2Router = IUniswapV2Router02(dexAddress);

772

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 769

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

768 _rOwned[_msgSender()] = _rTotal.div(10**2).mul(90);

769 _rOwned[_moonJPAddress] = _rTotal.div(10**2).mul(10);

770

771 IUniswapV2Router02 _uniswapV2Router = IUniswapV2Router02(dexAddress);

772 // Create a uniswap pair for this new token

773

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 899

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

898 require(_isExcluded[account], "Account is already excluded");

899 for (uint256 i = 0; i < _excluded.length; i++) {

900 if (_excluded[i] == account) {

901 _excluded[i] = _excluded[_excluded.length - 1];

902 _tOwned[account] = 0;

903

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 901

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

900 if (_excluded[i] == account) {

901 _excluded[i] = _excluded[_excluded.length - 1];

902 _tOwned[account] = 0;

903 _isExcluded[account] = false;

904 _excluded.pop();

905

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 949

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

948 uint256 eachPortion =

_rOwned[_moonWalletAddress].div(10).div(_numberOfSecondPrizeWinner);

949 for (uint256 i = 0; i < winningAddresses.length; i++) {

950 _rOwned[winningAddresses[i]] = _rOwned[winningAddresses[i]].add(eachPortion);

951 }

952 _rOwned[_moonWalletAddress] =

_rOwned[_moonWalletAddress].sub(_rOwned[_moonWalletAddress].div(10));

953

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 956

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

955 _numberOfFirstPrizeWinner = winningAddresses.length ;

956 uint256 _jpPortion = _rTotal.div(10**2).mul(10).mul(_jpRatio).div(10**3);

957 uint256 eachPortion = _rOwned[_moonWalletAddress].div(_numberOfFirstPrizeWinner);

958 for (uint256 i = 0; i < winningAddresses.length; i++) {

959 _rOwned[winningAddresses[i]] = _rOwned[winningAddresses[i]].add(eachPortion);

960

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 958

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

957 uint256 eachPortion = _rOwned[_moonWalletAddress].div(_numberOfFirstPrizeWinner);

958 for (uint256 i = 0; i < winningAddresses.length; i++) {

959 _rOwned[winningAddresses[i]] = _rOwned[winningAddresses[i]].add(eachPortion);

960 _rOwned[winningAddresses[i]] = _rOwned[winningAddresses[i]].add(_jpPortion);

961 _rOwned[_moonJPAddress] = _rOwned[_moonJPAddress].sub(_jpPortion);

962

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 969

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

968 _maxTxAmount = _tTotal.mul(maxTxPercent).div(

969 10**2

970);

971 }

972

973

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1020

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1019 uint256 tSupply = _tTotal;

1020 for (uint256 i = 0; i < _excluded.length; i++) {

1021 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1022 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1023 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1024

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1056

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1055 return _amount.mul(_taxFee).div(

1056 10**2

1057);

1058 }

1059

1060

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1062

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1061 return _amount.mul(_developmentFee).div(

1062 10**2

1063);

1064 }

1065

1066

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1068

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1067 return _amount.mul(_moonFee).div(

1068 10**2

1069);

1070 }

1071

1072

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1074

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1073 return _amount.mul(_liquidityFee).div(

1074 10**2

1075);

1076 }

1077

1078

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1292

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1291 delete allNumbers;

1292 drawNo ++ ;

1293 uint256 moonSpecialNumber;

1294 uint256 randNonce = _rTotal.div(10**12);

1295

1296

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1294

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1293 uint256 moonSpecialNumber;

1294 uint256 randNonce = _rTotal.div(10**12);

1295

1296 for (uint i = 1 ; i < 6 ; i++) {

1297 uint j;

1298

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1296

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1295

1296 for (uint i = 1 ; i < 6 ; i++) {

1297 uint j;

1298 uint countUnmatched;

1299

1300

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1300

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1299

1300 randNonce++;

1301 j = uint(keccak256(abi.encodePacked(block.timestamp,msg.sender, randNonce*(i-

1)))) % _modulus+1;

1302 if (i>1) {

1303 for (uint k = 0; k< allNumbers.length; k++) {

1304

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1301

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1300 randNonce++;

1301 j = uint(keccak256(abi.encodePacked(block.timestamp,msg.sender, randNonce*(i-

1)))) % _modulus+1;

1302 if (i>1) {

1303 for (uint k = 0; k< allNumbers.length; k++) {

1304 if (allNumbers[k] != j) {

1305

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1303

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1302 if (i>1) {

1303 for (uint k = 0; k< allNumbers.length; k++) {

1304 if (allNumbers[k] != j) {

1305 countUnmatched++ ;

1306 }

1307

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1305

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1304 if (allNumbers[k] != j) {

1305 countUnmatched++ ;

1306 }

1307 while (countUnmatched < allNumbers.length) {

1308 countUnmatched = 0;

1309

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1309

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1308 countUnmatched = 0;

1309 j =uint(keccak256(abi.encodePacked(randNonce++))) % _modulus + 1;

1310 for (uint r = 0; r< allNumbers.length; r++) {

1311 if (allNumbers[r] != j) {

1312 countUnmatched++ ;

1313

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1310

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1309 j =uint(keccak256(abi.encodePacked(randNonce++))) % _modulus + 1;

1310 for (uint r = 0; r< allNumbers.length; r++) {

1311 if (allNumbers[r] != j) {

1312 countUnmatched++ ;

1313 }

1314

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1312

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1311 if (allNumbers[r] != j) {

1312 countUnmatched++ ;

1313 }

1314 }

1315 }

1316

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1321

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1320

1321 uint m = allNumbers.length - 1;

1322 while (m > 0) {

1323 if (allNumbers[m] > allNumbers[m-1]) {

1324 break;

1325

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1323

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1322 while (m > 0) {

1323 if (allNumbers[m] > allNumbers[m-1]) {

1324 break;

1325 }

1326 uint n = allNumbers[m-1];

1327

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1326

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1325 }

1326 uint n = allNumbers[m-1];

1327 allNumbers[m-1] = allNumbers[m];

1328 allNumbers[m] = n;

1329 m--;

1330

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1327

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1326 uint n = allNumbers[m-1];

1327 allNumbers[m-1] = allNumbers[m];

1328 allNumbers[m] = n;

1329 m--;

1330 }

1331

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "--" DISCOVERED
LINE 1329

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1328 allNumbers[m] = n;

1329 m--;

1330 }

1331

1332 }

1333

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1334

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1333

1334 randNonce++;

1335 moonSpecialNumber = uint(keccak256(abi.encodePacked(block.timestamp,msg.sender,

randNonce*777))) % 8 + 1;

1336 allNumbers.push(moonSpecialNumber);

1337

1338

Super Moon Lotto | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1335

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1334 randNonce++;

1335 moonSpecialNumber = uint(keccak256(abi.encodePacked(block.timestamp,msg.sender,

randNonce*777))) % 8 + 1;

1336 allNumbers.push(moonSpecialNumber);

1337

1338 allPastDraws[drawNo] = allNumbers;

1339

Super Moon Lotto | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 901

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

900 if (_excluded[i] == account) {

901 _excluded[i] = _excluded[_excluded.length - 1];

902 _tOwned[account] = 0;

903 _isExcluded[account] = false;

904 _excluded.pop();

905

Super Moon Lotto | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1301

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1300 randNonce++;

1301 j = uint(keccak256(abi.encodePacked(block.timestamp,msg.sender, randNonce*(i-

1)))) % _modulus+1;

1302 if (i>1) {

1303 for (uint k = 0; k< allNumbers.length; k++) {

1304 if (allNumbers[k] != j) {

1305

Super Moon Lotto | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1321

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1320

1321 uint m = allNumbers.length - 1;

1322 while (m > 0) {

1323 if (allNumbers[m] > allNumbers[m-1]) {

1324 break;

1325

Super Moon Lotto | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1323

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1322 while (m > 0) {

1323 if (allNumbers[m] > allNumbers[m-1]) {

1324 break;

1325 }

1326 uint n = allNumbers[m-1];

1327

Super Moon Lotto | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1326

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1325 }

1326 uint n = allNumbers[m-1];

1327 allNumbers[m-1] = allNumbers[m];

1328 allNumbers[m] = n;

1329 m--;

1330

Super Moon Lotto | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1327

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SuperMoonLotto.sol

Locations

1326 uint n = allNumbers[m-1];

1327 allNumbers[m-1] = allNumbers[m];

1328 allNumbers[m] = n;

1329 m--;

1330 }

1331

Super Moon Lotto | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 5

low SEVERITY
The current pragma Solidity directive is ""^0.8.4"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- SuperMoonLotto.sol

Locations

4

5 pragma solidity ^0.8.4;

6 // SPDX-License-Identifier: Unlicensed

7 interface IERC20 {

8

9

Super Moon Lotto | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 729

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "allNumbers" is
internal. Other possible visibility settings are public and private.

Source File
- SuperMoonLotto.sol

Locations

728 uint256 public _numberOfSecondPrizeWinner;

729 uint256[] allNumbers ;

730

731 IUniswapV2Router02 public uniswapV2Router;

732 address public uniswapV2Pair;

733

Super Moon Lotto | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 734

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- SuperMoonLotto.sol

Locations

733

734 bool inSwapAndLiquify;

735 bool public swapAndLiquifyEnabled = true; //CHANGE_OPTIONAL: enable / disable

locking `liquidityFee` to Pancakeswap

736 bool ownerInTransact = false;

737 bool devInTransact = false;

738

Super Moon Lotto | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 736

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "ownerInTransact" is
internal. Other possible visibility settings are public and private.

Source File
- SuperMoonLotto.sol

Locations

735 bool public swapAndLiquifyEnabled = true; //CHANGE_OPTIONAL: enable / disable

locking `liquidityFee` to Pancakeswap

736 bool ownerInTransact = false;

737 bool devInTransact = false;

738 bool moonJpInTransact = false;

739 bool moonFeeInTransact = false;

740

Super Moon Lotto | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 737

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "devInTransact" is
internal. Other possible visibility settings are public and private.

Source File
- SuperMoonLotto.sol

Locations

736 bool ownerInTransact = false;

737 bool devInTransact = false;

738 bool moonJpInTransact = false;

739 bool moonFeeInTransact = false;

740

741

Super Moon Lotto | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 738

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "moonJpInTransact" is
internal. Other possible visibility settings are public and private.

Source File
- SuperMoonLotto.sol

Locations

737 bool devInTransact = false;

738 bool moonJpInTransact = false;

739 bool moonFeeInTransact = false;

740

741 uint256 public _maxTxAmount = 20000 * 10**6 * 10**9;

//CHANGE_OPTIONAL: max amount of tokens that can be transferred per transaction

742

Super Moon Lotto | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 739

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "moonFeeInTransact"
is internal. Other possible visibility settings are public and private.

Source File
- SuperMoonLotto.sol

Locations

738 bool moonJpInTransact = false;

739 bool moonFeeInTransact = false;

740

741 uint256 public _maxTxAmount = 20000 * 10**6 * 10**9;

//CHANGE_OPTIONAL: max amount of tokens that can be transferred per transaction

742 uint256 private numTokensSellToAddToLiquidity = 20000 * 10**6 * 10**9;

//CHANGE_OPTIONAL: minimum number of tokens in contract to be sent to Pancakeswap pool

743

Super Moon Lotto | Security Analysis

SWC-110 | PUBLIC STATE VARIABLE WITH ARRAY TYPE
CAUSING REACHABLE EXCEPTION BY DEFAULT.
LINE 727

low SEVERITY
The public state variable "allPastDraws" in "SuperMoonLotto" contract has type "mapping(uint256 =>
uint256[])" and can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

726 uint256 public drawNo;

727 mapping (uint256 => uint256 []) public allPastDraws;

728 uint256 public _numberOfSecondPrizeWinner;

729 uint256[] allNumbers ;

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 900

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

899 for (uint256 i = 0; i < _excluded.length; i++) {

900 if (_excluded[i] == account) {

901 _excluded[i] = _excluded[_excluded.length - 1];

902 _tOwned[account] = 0;

903 _isExcluded[account] = false;

904

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 901

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

900 if (_excluded[i] == account) {

901 _excluded[i] = _excluded[_excluded.length - 1];

902 _tOwned[account] = 0;

903 _isExcluded[account] = false;

904 _excluded.pop();

905

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 950

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

949 for (uint256 i = 0; i < winningAddresses.length; i++) {

950 _rOwned[winningAddresses[i]] = _rOwned[winningAddresses[i]].add(eachPortion);

951 }

952 _rOwned[_moonWalletAddress] =

_rOwned[_moonWalletAddress].sub(_rOwned[_moonWalletAddress].div(10));

953 }

954

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 959

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

958 for (uint256 i = 0; i < winningAddresses.length; i++) {

959 _rOwned[winningAddresses[i]] = _rOwned[winningAddresses[i]].add(eachPortion);

960 _rOwned[winningAddresses[i]] = _rOwned[winningAddresses[i]].add(_jpPortion);

961 _rOwned[_moonJPAddress] = _rOwned[_moonJPAddress].sub(_jpPortion);

962 }

963

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 960

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

959 _rOwned[winningAddresses[i]] = _rOwned[winningAddresses[i]].add(eachPortion);

960 _rOwned[winningAddresses[i]] = _rOwned[winningAddresses[i]].add(_jpPortion);

961 _rOwned[_moonJPAddress] = _rOwned[_moonJPAddress].sub(_jpPortion);

962 }

963 _rOwned[_moonWalletAddress] =

_rOwned[_moonWalletAddress].sub(_rOwned[_moonWalletAddress]);

964

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1021

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

1020 for (uint256 i = 0; i < _excluded.length; i++) {

1021 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1022 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1023 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1024 }

1025

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1022

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

1021 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1022 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1023 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1024 }

1025 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1026

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1023

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

1022 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1023 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1024 }

1025 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1026 return (rSupply, tSupply);

1027

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1204

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

1203 address[] memory path = new address[](2);

1204 path[0] = address(this);

1205 path[1] = uniswapV2Router.WETH();

1206

1207 _approve(address(this), address(uniswapV2Router), tokenAmount);

1208

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1205

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

1204 path[0] = address(this);

1205 path[1] = uniswapV2Router.WETH();

1206

1207 _approve(address(this), address(uniswapV2Router), tokenAmount);

1208

1209

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1304

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

1303 for (uint k = 0; k< allNumbers.length; k++) {

1304 if (allNumbers[k] != j) {

1305 countUnmatched++ ;

1306 }

1307 while (countUnmatched < allNumbers.length) {

1308

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1311

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

1310 for (uint r = 0; r< allNumbers.length; r++) {

1311 if (allNumbers[r] != j) {

1312 countUnmatched++ ;

1313 }

1314 }

1315

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1323

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

1322 while (m > 0) {

1323 if (allNumbers[m] > allNumbers[m-1]) {

1324 break;

1325 }

1326 uint n = allNumbers[m-1];

1327

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1326

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

1325 }

1326 uint n = allNumbers[m-1];

1327 allNumbers[m-1] = allNumbers[m];

1328 allNumbers[m] = n;

1329 m--;

1330

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1327

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

1326 uint n = allNumbers[m-1];

1327 allNumbers[m-1] = allNumbers[m];

1328 allNumbers[m] = n;

1329 m--;

1330 }

1331

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1328

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

1327 allNumbers[m-1] = allNumbers[m];

1328 allNumbers[m] = n;

1329 m--;

1330 }

1331

1332

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1341

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

1340 emit NewDraw(

1341 allNumbers[0],

1342 allNumbers[1],

1343 allNumbers[2],

1344 allNumbers[3],

1345

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1342

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

1341 allNumbers[0],

1342 allNumbers[1],

1343 allNumbers[2],

1344 allNumbers[3],

1345 allNumbers[4],

1346

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1343

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

1342 allNumbers[1],

1343 allNumbers[2],

1344 allNumbers[3],

1345 allNumbers[4],

1346 moonSpecialNumber,

1347

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1344

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

1343 allNumbers[2],

1344 allNumbers[3],

1345 allNumbers[4],

1346 moonSpecialNumber,

1347 drawNo

1348

Super Moon Lotto | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1345

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SuperMoonLotto.sol

Locations

1344 allNumbers[3],

1345 allNumbers[4],

1346 moonSpecialNumber,

1347 drawNo

1348);

1349

Super Moon Lotto | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Super Moon Lotto | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

