
Bitindi Chain

Smart Contract
Audit Report

09 Oct 2022

Bitindi Chain | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Bitindi Chain | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Bitindi Chain BNI Binance Smart Chain

| Addresses

Contract address 0x77fc65deda64f0cca9e3aea7b9d8521f4151882e

Contract deployer address 0xFB1E1d8b25Ab32F3353C23f8420B68A0376d5083

| Project Website

https://bitindi.com/

| Codebase

https://bscscan.com/address/0x77fc65deda64f0cca9e3aea7b9d8521f4151882e#code

https://bitindi.com/
https://bscscan.com/address/0x77fc65deda64f0cca9e3aea7b9d8521f4151882e#code

Bitindi Chain | Security Analysis

SUMMARY

Bitindi Chain (Bitindi) is a decentralized, high-efficiency, and energy-saving layer-1 public chain. It is compatible
with smart contracts and supports high-performance transactions. The endogenous token of Bitindi is $BNI
and it adopts the PoS consensus mechanism. Bitindi will continue to onboard billions of users with ultra-fast
transactions, tiny fees, easy-to-use apps, and environmentally friendliness.

| Contract Summary

Documentation Quality

Bitindi Chain provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Bitindi Chain with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 118, 119, 121, 161, 162, 165
and 176.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 134, 134, 158, 158, 159, 159, 163, 163, 325, 353, 424, 431, 431, 431, 431, 432, 432, 436, 436, 436,
437, 437, 441, 441, 445, 445, 449, 449, 453, 453, 454, 454, 456, 456, 457, 458, 474, 474, 479, 479, 479,
479, 480, 480, 525, 526, 556, 570, 570, 630, 630, 631, 631, 646, 651, 704, 704, 706, 710, 715, 716, 716,
717 and 717.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 6.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 586, 587, 716, 717 and 717.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 514.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 625.

Bitindi Chain | Security Analysis

CONCLUSION

We have audited the Bitindi Chain project released on October 2022 to discover issues and identify potential
security vulnerabilities in Bitindi Chain Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the Bitindi Chain smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, weak sources of randomness,
tx.origin as a part of authorization control, and out-of-bounds array access which the index access expression
can cause an exception in case of the use of an invalid array index value. The current pragma Solidity directive
is "">=0.6.00.9.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced
does not vary between builds. This is especially important if you rely on bytecode-level verification of the
code.It is best practice to set the visibility of state variables explicitly. The default visibility for "_tOwned" is
internal. Other possible visibility settings are public and private.Use of "tx.origin" as a part of authorization
control, tx.origin environment variable has been found to influence a control flow decision. Note that using
"tx.origin" as a security control might cause a situation where a user inadvertently authorizes a smart contract
to perform an action on their behalf. It is recommended to use "msg.sender" instead.

Bitindi Chain | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Bitindi Chain | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Bitindi Chain | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Bitindi Chain | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Oct 08 2022 16:48:51 GMT+0000 (Coordinated Universal Time)

Finished Sunday Oct 09 2022 12:28:49 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File BitindiChain.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 134

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

133 uint8 constant private _decimals = 18;

134 uint256 constant private _tTotal = startingSupply * (10 ** _decimals);

135

136 struct Fees {

137 uint16 buyFee;

138

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 134

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

133 uint8 constant private _decimals = 18;

134 uint256 constant private _tTotal = startingSupply * (10 ** _decimals);

135

136 struct Fees {

137 uint16 buyFee;

138

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 158

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

157

158 uint256 private _maxTxAmount = (_tTotal * 1) / 100;

159 uint256 private _maxWalletSize = (_tTotal * 1) / 100;

160

161 Cashier cashier;

162

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 158

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

157

158 uint256 private _maxTxAmount = (_tTotal * 1) / 100;

159 uint256 private _maxWalletSize = (_tTotal * 1) / 100;

160

161 Cashier cashier;

162

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 159

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

158 uint256 private _maxTxAmount = (_tTotal * 1) / 100;

159 uint256 private _maxWalletSize = (_tTotal * 1) / 100;

160

161 Cashier cashier;

162 uint256 reflectorGas = 300000;

163

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 159

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

158 uint256 private _maxTxAmount = (_tTotal * 1) / 100;

159 uint256 private _maxWalletSize = (_tTotal * 1) / 100;

160

161 Cashier cashier;

162 uint256 reflectorGas = 300000;

163

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 163

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

162 uint256 reflectorGas = 300000;

163 uint256 public minimumHoldForRewards = 10_000 * (10**_decimals);

164

165 bool inSwap;

166 bool public contractSwapEnabled = false;

167

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 163

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

162 uint256 reflectorGas = 300000;

163 uint256 public minimumHoldForRewards = 10_000 * (10**_decimals);

164

165 bool inSwap;

166 bool public contractSwapEnabled = false;

167

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 325

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

324 if (_allowances[sender][msg.sender] != type(uint256).max) {

325 _allowances[sender][msg.sender] -= amount;

326 }

327

328 return _transfer(sender, recipient, amount);

329

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 353

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

352 if (timeSinceLastPair != 0) {

353 require(block.timestamp - timeSinceLastPair > 3 days, "3 Day cooldown.");

354 }

355 lpPairs[pair] = true;

356 timeSinceLastPair = block.timestamp;

357

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 424

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

423 require(transferFee <= maxTransferTaxes, "Cannot exceed maximums.");

424 require(buyFee + sellFee <= maxRoundtripTax, "Cannot exceed roundtrip maximum.");

425 _taxRates.buyFee = buyFee;

426 _taxRates.sellFee = sellFee;

427 _taxRates.transferFee = transferFee;

428

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 431

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

430 function setMaxTxPercent(uint256 percent, uint256 divisor) external onlyOwner {

431 require((_tTotal * percent) / divisor >= (_tTotal * 5 / 1000), "Max Transaction amt

must be above 0.5% of total supply.");

432 _maxTxAmount = (_tTotal * percent) / divisor;

433 }

434

435

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 431

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

430 function setMaxTxPercent(uint256 percent, uint256 divisor) external onlyOwner {

431 require((_tTotal * percent) / divisor >= (_tTotal * 5 / 1000), "Max Transaction amt

must be above 0.5% of total supply.");

432 _maxTxAmount = (_tTotal * percent) / divisor;

433 }

434

435

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 431

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

430 function setMaxTxPercent(uint256 percent, uint256 divisor) external onlyOwner {

431 require((_tTotal * percent) / divisor >= (_tTotal * 5 / 1000), "Max Transaction amt

must be above 0.5% of total supply.");

432 _maxTxAmount = (_tTotal * percent) / divisor;

433 }

434

435

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 431

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

430 function setMaxTxPercent(uint256 percent, uint256 divisor) external onlyOwner {

431 require((_tTotal * percent) / divisor >= (_tTotal * 5 / 1000), "Max Transaction amt

must be above 0.5% of total supply.");

432 _maxTxAmount = (_tTotal * percent) / divisor;

433 }

434

435

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 432

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

431 require((_tTotal * percent) / divisor >= (_tTotal * 5 / 1000), "Max Transaction amt

must be above 0.5% of total supply.");

432 _maxTxAmount = (_tTotal * percent) / divisor;

433 }

434

435 function setMaxWalletSize(uint256 percent, uint256 divisor) external onlyOwner {

436

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 432

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

431 require((_tTotal * percent) / divisor >= (_tTotal * 5 / 1000), "Max Transaction amt

must be above 0.5% of total supply.");

432 _maxTxAmount = (_tTotal * percent) / divisor;

433 }

434

435 function setMaxWalletSize(uint256 percent, uint256 divisor) external onlyOwner {

436

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 436

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

435 function setMaxWalletSize(uint256 percent, uint256 divisor) external onlyOwner {

436 require((_tTotal * percent) / divisor >= (_tTotal / 100), "Max Wallet amt must be

above 1% of total supply.");

437 _maxWalletSize = (_tTotal * percent) / divisor;

438 }

439

440

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 436

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

435 function setMaxWalletSize(uint256 percent, uint256 divisor) external onlyOwner {

436 require((_tTotal * percent) / divisor >= (_tTotal / 100), "Max Wallet amt must be

above 1% of total supply.");

437 _maxWalletSize = (_tTotal * percent) / divisor;

438 }

439

440

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 436

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

435 function setMaxWalletSize(uint256 percent, uint256 divisor) external onlyOwner {

436 require((_tTotal * percent) / divisor >= (_tTotal / 100), "Max Wallet amt must be

above 1% of total supply.");

437 _maxWalletSize = (_tTotal * percent) / divisor;

438 }

439

440

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 437

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

436 require((_tTotal * percent) / divisor >= (_tTotal / 100), "Max Wallet amt must be

above 1% of total supply.");

437 _maxWalletSize = (_tTotal * percent) / divisor;

438 }

439

440 function getMaxTX() public view returns (uint256) {

441

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 437

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

436 require((_tTotal * percent) / divisor >= (_tTotal / 100), "Max Wallet amt must be

above 1% of total supply.");

437 _maxWalletSize = (_tTotal * percent) / divisor;

438 }

439

440 function getMaxTX() public view returns (uint256) {

441

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 441

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

440 function getMaxTX() public view returns (uint256) {

441 return _maxTxAmount / (10**_decimals);

442 }

443

444 function getMaxWallet() public view returns (uint256) {

445

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 441

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

440 function getMaxTX() public view returns (uint256) {

441 return _maxTxAmount / (10**_decimals);

442 }

443

444 function getMaxWallet() public view returns (uint256) {

445

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 445

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

444 function getMaxWallet() public view returns (uint256) {

445 return _maxWalletSize / (10**_decimals);

446 }

447

448 function getTokenAmountAtPriceImpact(uint256 priceImpactInHundreds) external view

returns (uint256) {

449

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 445

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

444 function getMaxWallet() public view returns (uint256) {

445 return _maxWalletSize / (10**_decimals);

446 }

447

448 function getTokenAmountAtPriceImpact(uint256 priceImpactInHundreds) external view

returns (uint256) {

449

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 449

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

448 function getTokenAmountAtPriceImpact(uint256 priceImpactInHundreds) external view

returns (uint256) {

449 return((balanceOf(lpPair) * priceImpactInHundreds) / masterTaxDivisor);

450 }

451

452 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

453

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 449

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

448 function getTokenAmountAtPriceImpact(uint256 priceImpactInHundreds) external view

returns (uint256) {

449 return((balanceOf(lpPair) * priceImpactInHundreds) / masterTaxDivisor);

450 }

451

452 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

453

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 453

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

452 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

453 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

454 swapAmount = (_tTotal * amountPercent) / amountDivisor;

455 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

456 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

457

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 453

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

452 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

453 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

454 swapAmount = (_tTotal * amountPercent) / amountDivisor;

455 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

456 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

457

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 454

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

453 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

454 swapAmount = (_tTotal * amountPercent) / amountDivisor;

455 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

456 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

457 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

458

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 454

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

453 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

454 swapAmount = (_tTotal * amountPercent) / amountDivisor;

455 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

456 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

457 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

458

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 456

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

455 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

456 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

457 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

458 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

459 }

460

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 456

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

455 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

456 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

457 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

458 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

459 }

460

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 457

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

456 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

457 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

458 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

459 }

460

461

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 458

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

457 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

458 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

459 }

460

461 function setPriceImpactSwapAmount(uint256 priceImpactSwapPercent) external

onlyOwner {

462

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 474

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

473 function setRewardsProperties(uint256 _minPeriod, uint256 _minReflection, uint256

minReflectionMultiplier) external onlyOwner {

474 _minReflection = _minReflection * 10**minReflectionMultiplier;

475 cashier.setRewardsProperties(_minPeriod, _minReflection);

476 }

477

478

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 474

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

473 function setRewardsProperties(uint256 _minPeriod, uint256 _minReflection, uint256

minReflectionMultiplier) external onlyOwner {

474 _minReflection = _minReflection * 10**minReflectionMultiplier;

475 cashier.setRewardsProperties(_minPeriod, _minReflection);

476 }

477

478

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 479

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

478 function setMinimumHoldForRewards(uint256 percent, uint256 divisor) external

onlyOwner {

479 require((_tTotal * percent) / divisor < (_tTotal * 2) / 100, "Cannot exceed maximum

amount for this value.");

480 minimumHoldForRewards = (_tTotal * percent) / divisor;

481 }

482

483

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 479

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

478 function setMinimumHoldForRewards(uint256 percent, uint256 divisor) external

onlyOwner {

479 require((_tTotal * percent) / divisor < (_tTotal * 2) / 100, "Cannot exceed maximum

amount for this value.");

480 minimumHoldForRewards = (_tTotal * percent) / divisor;

481 }

482

483

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 479

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

478 function setMinimumHoldForRewards(uint256 percent, uint256 divisor) external

onlyOwner {

479 require((_tTotal * percent) / divisor < (_tTotal * 2) / 100, "Cannot exceed maximum

amount for this value.");

480 minimumHoldForRewards = (_tTotal * percent) / divisor;

481 }

482

483

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 479

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

478 function setMinimumHoldForRewards(uint256 percent, uint256 divisor) external

onlyOwner {

479 require((_tTotal * percent) / divisor < (_tTotal * 2) / 100, "Cannot exceed maximum

amount for this value.");

480 minimumHoldForRewards = (_tTotal * percent) / divisor;

481 }

482

483

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 480

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

479 require((_tTotal * percent) / divisor < (_tTotal * 2) / 100, "Cannot exceed maximum

amount for this value.");

480 minimumHoldForRewards = (_tTotal * percent) / divisor;

481 }

482

483 function setReflectorSettings(uint256 gas) external onlyOwner {

484

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 480

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

479 require((_tTotal * percent) / divisor < (_tTotal * 2) / 100, "Cannot exceed maximum

amount for this value.");

480 minimumHoldForRewards = (_tTotal * percent) / divisor;

481 }

482

483 function setReflectorSettings(uint256 gas) external onlyOwner {

484

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 525

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

524 function _basicTransfer(address from, address to, uint256 amount) internal returns

(bool) {

525 _tOwned[from] -= amount;

526 _tOwned[to] += amount;

527 emit Transfer(from, to, amount);

528 return true;

529

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 526

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

525 _tOwned[from] -= amount;

526 _tOwned[to] += amount;

527 emit Transfer(from, to, amount);

528 return true;

529 }

530

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 556

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

555 if (!_isExcludedFromLimits[to]) {

556 require(balanceOf(to) + amount <= _maxWalletSize, "Transfer amount exceeds the

maxWalletSize.");

557 }

558 }

559 }

560

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 570

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

569 uint256 swapAmt = swapAmount;

570 if (piContractSwapsEnabled) { swapAmt = (balanceOf(lpPair) * piSwapPercent) /

masterTaxDivisor; }

571 if (contractTokenBalance >= swapAmt) { contractTokenBalance = swapAmt; }

572 contractSwap(contractTokenBalance);

573 }

574

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 570

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

569 uint256 swapAmt = swapAmount;

570 if (piContractSwapsEnabled) { swapAmt = (balanceOf(lpPair) * piSwapPercent) /

masterTaxDivisor; }

571 if (contractTokenBalance >= swapAmt) { contractTokenBalance = swapAmt; }

572 contractSwap(contractTokenBalance);

573 }

574

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 630

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

629 allowedPresaleExclusion = false;

630 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

631 swapAmount = (balanceOf(lpPair) * 30) / 10000;

632 }

633

634

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 630

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

629 allowedPresaleExclusion = false;

630 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

631 swapAmount = (balanceOf(lpPair) * 30) / 10000;

632 }

633

634

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 631

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

630 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

631 swapAmount = (balanceOf(lpPair) * 30) / 10000;

632 }

633

634 function finalizeTransfer(address from, address to, uint256 amount, bool buy, bool

sell, bool other) internal returns (bool) {

635

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 631

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

630 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

631 swapAmount = (balanceOf(lpPair) * 30) / 10000;

632 }

633

634 function finalizeTransfer(address from, address to, uint256 amount, bool buy, bool

sell, bool other) internal returns (bool) {

635

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 646

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

645

646 _tOwned[from] -= amount;

647 uint256 amountReceived = amount;

648 if (takeFee) {

649 amountReceived = takeTaxes(from, amount, buy, sell, other);

650

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 651

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

650 }

651 _tOwned[to] += amountReceived;

652 emit Transfer(from, to, amountReceived);

653 if (!_hasLiqBeenAdded) {

654 _checkLiquidityAdd(from, to);

655

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 704

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

703 || block.chainid == 56)) { currentFee = 4500; }

704 uint256 feeAmount = amount * currentFee / masterTaxDivisor;

705 if (feeAmount > 0) {

706 _tOwned[address(this)] += feeAmount;

707 emit Transfer(from, address(this), feeAmount);

708

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 704

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

703 || block.chainid == 56)) { currentFee = 4500; }

704 uint256 feeAmount = amount * currentFee / masterTaxDivisor;

705 if (feeAmount > 0) {

706 _tOwned[address(this)] += feeAmount;

707 emit Transfer(from, address(this), feeAmount);

708

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 706

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

705 if (feeAmount > 0) {

706 _tOwned[address(this)] += feeAmount;

707 emit Transfer(from, address(this), feeAmount);

708 }

709

710

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 710

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

709

710 return amount - feeAmount;

711 }

712

713 function multiSendTokens(address[] memory accounts, uint256[] memory amounts)

external onlyOwner {

714

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 715

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

714 require(accounts.length == amounts.length, "Lengths do not match.");

715 for (uint16 i = 0; i < accounts.length; i++) {

716 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

717 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

718 }

719

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 716

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

715 for (uint16 i = 0; i < accounts.length; i++) {

716 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

717 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

718 }

719 }

720

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 716

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

715 for (uint16 i = 0; i < accounts.length; i++) {

716 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

717 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

718 }

719 }

720

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 717

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

716 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

717 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

718 }

719 }

720

721

Bitindi Chain | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 717

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitindiChain.sol

Locations

716 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

717 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

718 }

719 }

720

721

Bitindi Chain | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.9.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BitindiChain.sol

Locations

5 // SPDX-License-Identifier: MIT

6 pragma solidity >=0.6.0 <0.9.0;

7

8 interface IERC20 {

9 function totalSupply() external view returns (uint256);

10

Bitindi Chain | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 118

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_tOwned" is internal.
Other possible visibility settings are public and private.

Source File
- BitindiChain.sol

Locations

117 contract BitindiChain is IERC20 {

118 mapping (address => uint256) _tOwned;

119 mapping (address => bool) lpPairs;

120 uint256 private timeSinceLastPair = 0;

121 mapping (address => mapping (address => uint256)) _allowances;

122

Bitindi Chain | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 119

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "lpPairs" is internal.
Other possible visibility settings are public and private.

Source File
- BitindiChain.sol

Locations

118 mapping (address => uint256) _tOwned;

119 mapping (address => bool) lpPairs;

120 uint256 private timeSinceLastPair = 0;

121 mapping (address => mapping (address => uint256)) _allowances;

122 mapping (address => bool) private _isExcludedFromProtection;

123

Bitindi Chain | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 121

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_allowances" is
internal. Other possible visibility settings are public and private.

Source File
- BitindiChain.sol

Locations

120 uint256 private timeSinceLastPair = 0;

121 mapping (address => mapping (address => uint256)) _allowances;

122 mapping (address => bool) private _isExcludedFromProtection;

123 mapping (address => bool) private _isExcludedFromFees;

124 mapping (address => bool) private _isExcludedFromLimits;

125

Bitindi Chain | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 161

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "cashier" is internal.
Other possible visibility settings are public and private.

Source File
- BitindiChain.sol

Locations

160

161 Cashier cashier;

162 uint256 reflectorGas = 300000;

163 uint256 public minimumHoldForRewards = 10_000 * (10**_decimals);

164

165

Bitindi Chain | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 162

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "reflectorGas" is
internal. Other possible visibility settings are public and private.

Source File
- BitindiChain.sol

Locations

161 Cashier cashier;

162 uint256 reflectorGas = 300000;

163 uint256 public minimumHoldForRewards = 10_000 * (10**_decimals);

164

165 bool inSwap;

166

Bitindi Chain | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 165

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwap" is internal.
Other possible visibility settings are public and private.

Source File
- BitindiChain.sol

Locations

164

165 bool inSwap;

166 bool public contractSwapEnabled = false;

167 uint256 public swapThreshold;

168 uint256 public swapAmount;

169

Bitindi Chain | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 176

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "protections" is
internal. Other possible visibility settings are public and private.

Source File
- BitindiChain.sol

Locations

175 bool public _hasLiqBeenAdded = false;

176 Protections protections;

177

178 modifier inSwapFlag() {

179 inSwap = true;

180

Bitindi Chain | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 514

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using
"tx.origin" as a security control might cause a situation where a user inadvertently authorizes a smart contract
to perform an action on their behalf. It is recommended to use "msg.sender" instead.

Source File
- BitindiChain.sol

Locations

513 && to != _owner

514 && tx.origin != _owner

515 && !_liquidityHolders[to]

516 && !_liquidityHolders[from]

517 && to != DEAD

518

Bitindi Chain | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 586

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BitindiChain.sol

Locations

585 address[] memory path = new address[](2);

586 path[0] = address(this);

587 path[1] = dexRouter.WETH();

588

589 try dexRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(

590

Bitindi Chain | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 587

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BitindiChain.sol

Locations

586 path[0] = address(this);

587 path[1] = dexRouter.WETH();

588

589 try dexRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(

590 contractTokenBalance,

591

Bitindi Chain | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 716

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BitindiChain.sol

Locations

715 for (uint16 i = 0; i < accounts.length; i++) {

716 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

717 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

718 }

719 }

720

Bitindi Chain | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 717

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BitindiChain.sol

Locations

716 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

717 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

718 }

719 }

720

721

Bitindi Chain | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 717

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BitindiChain.sol

Locations

716 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

717 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

718 }

719 }

720

721

Bitindi Chain | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 625

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- BitindiChain.sol

Locations

624 }

625 try protections.setLaunch(lpPair, uint32(block.number), uint64(block.timestamp),

_decimals) {} catch {}

626 try cashier.initialize() {} catch {}

627 tradingEnabled = true;

628 processReflect = true;

629

Bitindi Chain | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Bitindi Chain | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

