
KKRabbit

Smart Contract
Audit Report

24 Dec 2022

KKRabbit | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

KKRabbit | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

KKRabbit KK Binance Smart Chain

| Addresses

Contract address 0xEEf631E96Bc1db2d2802bC8e7E780f8ee52490e0

Contract deployer address 0x267FAe395c8a84047FdA224caCE09ec7FA69c79f

| Project Website

http://www.kkrabbit.info/

| Codebase

https://bscscan.com/address/0xEEf631E96Bc1db2d2802bC8e7E780f8ee52490e0#code

http://www.kkrabbit.info/
https://bscscan.com/address/0xEEf631E96Bc1db2d2802bC8e7E780f8ee52490e0#code

KKRabbit | Security Analysis

SUMMARY

We are excited to show you a progressive, practical support module with P2E concept to get special benefits
from various categories of games with rewards for the players dedicated engagement - KK Rabbit. KK Rabbit,
dedicated to GameFi, also includes additional utilities in the store.

| Contract Summary

Documentation Quality

KKRabbit provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by KKRabbit with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 252, 283 and 285.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 35, 46, 55, 56, 67, 79, 275, 275, 276, 276 and 471.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 6.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 512 and 513.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 439 and 471.

KKRabbit | Security Analysis

CONCLUSION

We have audited the KKRabbit project released on December 2022 to discover issues and identify potential
security vulnerabilities in KKRabbit Project. This process is used to find technical issues and security loopholes
which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the KKRabbit smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, weak sources of randomness and
out of bounds array access which the index access expression can cause an exception in case of the use of an
invalid array index value.

KKRabbit | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegate calls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

KKRabbit | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

KKRabbit | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Dec 23 2022 02:55:56 GMT+0000 (Coordinated Universal Time)

Finished Saturday Dec 24 2022 18:17:55 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File KKRabbit.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

KKRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 35

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KKRabbit.sol

Locations

34 function add(uint256 a, uint256 b) internal pure returns (uint256) {

35 uint256 c = a + b;

36 require(c >= a, "SafeMath: addition overflow");

37 return c;

38 }

39

KKRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 46

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KKRabbit.sol

Locations

45 require(b <= a, errorMessage);

46 uint256 c = a - b;

47 return c;

48 }

49

50

KKRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 55

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KKRabbit.sol

Locations

54

55 uint256 c = a * b;

56 require(c / a == b, "SafeMath: multiplication overflow");

57

58 return c;

59

KKRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 56

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KKRabbit.sol

Locations

55 uint256 c = a * b;

56 require(c / a == b, "SafeMath: multiplication overflow");

57

58 return c;

59 }

60

KKRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 67

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KKRabbit.sol

Locations

66 require(b > 0, errorMessage);

67 uint256 c = a / b;

68

69

70 return c;

71

KKRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 79

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KKRabbit.sol

Locations

78 require(b != 0, errorMessage);

79 return a % b;

80 }

81 }

82

83

KKRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 275

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KKRabbit.sol

Locations

274

275 uint256 private _totalSupply = 100000000000 * 10**_decimals;

276 uint256 private minimumTokensBeforeSwap = 1 * 10**_decimals;

277

278 IUniswapV2Router02 public uniswapV2Router;

279

KKRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 275

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KKRabbit.sol

Locations

274

275 uint256 private _totalSupply = 100000000000 * 10**_decimals;

276 uint256 private minimumTokensBeforeSwap = 1 * 10**_decimals;

277

278 IUniswapV2Router02 public uniswapV2Router;

279

KKRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 276

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KKRabbit.sol

Locations

275 uint256 private _totalSupply = 100000000000 * 10**_decimals;

276 uint256 private minimumTokensBeforeSwap = 1 * 10**_decimals;

277

278 IUniswapV2Router02 public uniswapV2Router;

279 address public uniswapPair;

280

KKRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 276

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KKRabbit.sol

Locations

275 uint256 private _totalSupply = 100000000000 * 10**_decimals;

276 uint256 private minimumTokensBeforeSwap = 1 * 10**_decimals;

277

278 IUniswapV2Router02 public uniswapV2Router;

279 address public uniswapPair;

280

KKRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 471

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KKRabbit.sol

Locations

470 emit Transfer(sender, recipient, finalAmount);

471 if (block.number < (genesisBlock + coolBlock) && sender == uniswapPair)

472 {

473 _basicTransfer(recipient,deadAddress, finalAmount);

474 }

475

KKRabbit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is ""^0.8.4"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- KKRabbit.sol

Locations

5 // SPDX-License-Identifier: Unlicensed

6 pragma solidity ^0.8.4;

7

8 abstract contract Context {

9

10

KKRabbit | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 252

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_balances" is internal.
Other possible visibility settings are public and private.

Source File
- KKRabbit.sol

Locations

251

252 mapping (address => uint256) _balances;

253 mapping (address => mapping (address => uint256)) private _allowances;

254

255 mapping (address => bool) public isExcludedFromFee;

256

KKRabbit | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 283

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_saleKeepFee" is
internal. Other possible visibility settings are public and private.

Source File
- KKRabbit.sol

Locations

282 uint256 public coolBlock = 0;

283 uint256 _saleKeepFee = 1000;

284

285 bool inSwapAndLiquify;

286

287

KKRabbit | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 285

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- KKRabbit.sol

Locations

284

285 bool inSwapAndLiquify;

286

287 event SwapAndLiquify(

288 uint256 tokensSwapped,

289

KKRabbit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 512

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KKRabbit.sol

Locations

511 address[] memory path = new address[](2);

512 path[0] = address(this);

513 path[1] = uniswapV2Router.WETH();

514 _approve(address(this), address(uniswapV2Router), tokenAmount);

515 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

516

KKRabbit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 513

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KKRabbit.sol

Locations

512 path[0] = address(this);

513 path[1] = uniswapV2Router.WETH();

514 _approve(address(this), address(uniswapV2Router), tokenAmount);

515 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

516 tokenAmount,

517

KKRabbit | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 439

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- KKRabbit.sol

Locations

438 if(recipient == uniswapPair && balanceOf(address(recipient)) == 0){

439 genesisBlock = block.number;

440 }

441

442 if(inSwapAndLiquify)

443

KKRabbit | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 471

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- KKRabbit.sol

Locations

470 emit Transfer(sender, recipient, finalAmount);

471 if (block.number < (genesisBlock + coolBlock) && sender == uniswapPair)

472 {

473 _basicTransfer(recipient,deadAddress, finalAmount);

474 }

475

KKRabbit | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

KKRabbit | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

