
Coinary Token

Smart Contract
Audit Report

07 Sep 2021



Coinary Token | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us



Coinary Token | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Coinary Token CYT Binance Smart Chain

| Addresses

Contract address 0xd9025e25bb6cf39f8c926a704039d2dd51088063

Contract deployer address 0xF3Ced1e4F73256C4F34530F3AFF920c79A65f65d

| Project Website

https://hub.coinary.com/ 

| Codebase

https://bscscan.com/address/0xd9025e25bb6cf39f8c926a704039d2dd51088063#code 

https://hub.coinary.com/
https://bscscan.com/address/0xd9025e25bb6cf39f8c926a704039d2dd51088063#code


Coinary Token | Security Analysis

SUMMARY

Coinary token is a token that is hyper deflationary and controls the gamenomics of Dragonary, an NFT
blockchain game based on BSC.

| Contract Summary

Documentation Quality

Coinary Token provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Coinary Token with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% ( Through Codebase )

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 87, 88, 98, 853, 865, 878, 879, 890, 900, 914, 931, 946, 947, 965, 982, 1000, 1020, 1040, 1575, 1876,
1899, 87 and 88.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 9, 310, 503,
531, 750, 831, 1049, 1357, 1401, 1456, 1546, 1588, 1700, 1780 and 1831.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 93, 96 and 138.



Coinary Token | Security Analysis

CONCLUSION

We have audited the Coinary Token project released on September 2021 to discover issues and identify
potential security vulnerabilities in Coinary Token Project. This process is used to find technical issues and
security loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the Coinary Token smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues and out-of-bounds array access. The index access expression can cause an exception in case
of an invalid array index value.



Coinary Token | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS



Coinary Token | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS



Coinary Token | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS



Coinary Token | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Sep 06 2021 05:35:19 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Sep 07 2021 21:08:43 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File CoinaryToken.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged



SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged



SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 87

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

86   

87   uint256 toDeleteIndex = valueIndex - 1;

88   uint256 lastIndex = set._values.length - 1;

89   

90   // When the value to delete is the last one, the swap operation is unnecessary. 

However, since this occurs

91   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 88

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

87   uint256 toDeleteIndex = valueIndex - 1;

88   uint256 lastIndex = set._values.length - 1;

89   

90   // When the value to delete is the last one, the swap operation is unnecessary. 

However, since this occurs

91   // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' 

statement.

92   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 98

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

97   // Update the index for the moved value

98   set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based

99   

100   // Delete the slot where the moved value was stored

101   set._values.pop();

102   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 853

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

852   function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {

853   uint256 c = a + b;

854   if (c < a) return (false, 0);

855   return (true, c);

856   }

857   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 865

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

864   if (b > a) return (false, 0);

865   return (true, a - b);

866   }

867   

868   /**

869   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 878

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

877   if (a == 0) return (true, 0);

878   uint256 c = a * b;

879   if (c / a != b) return (false, 0);

880   return (true, c);

881   }

882   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 879

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

878   uint256 c = a * b;

879   if (c / a != b) return (false, 0);

880   return (true, c);

881   }

882   

883   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 890

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

889   if (b == 0) return (false, 0);

890   return (true, a / b);

891   }

892   

893   /**

894   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 900

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

899   if (b == 0) return (false, 0);

900   return (true, a % b);

901   }

902   

903   /**

904   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 914

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

913   function add(uint256 a, uint256 b) internal pure returns (uint256) {

914   uint256 c = a + b;

915   require(c >= a, "SafeMath: addition overflow");

916   return c;

917   }

918   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 931

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

930   require(b <= a, "SafeMath: subtraction overflow");

931   return a - b;

932   }

933   

934   /**

935   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 946

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

945   if (a == 0) return 0;

946   uint256 c = a * b;

947   require(c / a == b, "SafeMath: multiplication overflow");

948   return c;

949   }

950   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 947

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

946   uint256 c = a * b;

947   require(c / a == b, "SafeMath: multiplication overflow");

948   return c;

949   }

950   

951   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 965

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

964   require(b > 0, "SafeMath: division by zero");

965   return a / b;

966   }

967   

968   /**

969   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 982

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

981   require(b > 0, "SafeMath: modulo by zero");

982   return a % b;

983   }

984   

985   /**

986   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1000

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

999   require(b <= a, errorMessage);

1000   return a - b;

1001   }

1002   

1003   /**

1004   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1020

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

1019   require(b > 0, errorMessage);

1020   return a / b;

1021   }

1022   

1023   /**

1024   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 1040

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

1039   require(b > 0, errorMessage);

1040   return a % b;

1041   }

1042   }

1043   

1044   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1575

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

1574   // The {SafeMath} overflow check can be skipped here, see the comment at the top

1575   counter._value += 1;

1576   }

1577   

1578   function decrement(Counter storage counter) internal {

1579   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1876

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

1875   

1876   nextMintingDate = block.timestamp + 1 days;

1877   }

1878   

1879   /**

1880   



Coinary Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1899

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

1898   _mint(to, amount);

1899   nextMintingDate = block.timestamp + 1 days;

1900   }

1901   

1902   /**

1903   



Coinary Token | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 87

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

86   

87   uint256 toDeleteIndex = valueIndex - 1;

88   uint256 lastIndex = set._values.length - 1;

89   

90   // When the value to delete is the last one, the swap operation is unnecessary. 

However, since this occurs

91   



Coinary Token | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 88

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- CoinaryToken.sol 

Locations

87   uint256 toDeleteIndex = valueIndex - 1;

88   uint256 lastIndex = set._values.length - 1;

89   

90   // When the value to delete is the last one, the swap operation is unnecessary. 

However, since this occurs

91   // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' 

statement.

92   



Coinary Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 9

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CoinaryToken.sol 

Locations

8   

9   pragma solidity ^0.7.0;

10   

11   /**

12   * @dev Library for managing

13   



Coinary Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 310

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CoinaryToken.sol 

Locations

309   

310   pragma solidity ^0.7.0;

311   

312   /**

313   * @dev Collection of functions related to the address type

314   



Coinary Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 503

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CoinaryToken.sol 

Locations

502   

503   pragma solidity >=0.6.0 <0.8.0;

504   

505   /*

506   * @dev Provides information about the current execution context, including the

507   



Coinary Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 531

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CoinaryToken.sol 

Locations

530   

531   pragma solidity ^0.7.0;

532   

533   

534   

535   



Coinary Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 750

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CoinaryToken.sol 

Locations

749   

750   pragma solidity ^0.7.0;

751   

752   /**

753   * @dev Interface of the ERC20 standard as defined in the EIP.

754   



Coinary Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 831

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CoinaryToken.sol 

Locations

830   

831   pragma solidity ^0.7.0;

832   

833   /**

834   * @dev Wrappers over Solidity's arithmetic operations with added overflow

835   



Coinary Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1049

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CoinaryToken.sol 

Locations

1048   

1049   pragma solidity ^0.7.0;

1050   

1051   

1052   

1053   



Coinary Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1357

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CoinaryToken.sol 

Locations

1356   

1357   pragma solidity ^0.7.0;

1358   

1359   

1360   /**

1361   



Coinary Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1401

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CoinaryToken.sol 

Locations

1400   

1401   pragma solidity >=0.6.0 <0.8.0;

1402   

1403   /**

1404   * @dev Interface of the ERC20 Permit extension allowing approvals to be made via 

signatures, as defined in

1405   



Coinary Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1456

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CoinaryToken.sol 

Locations

1455   

1456   pragma solidity ^0.7.0;

1457   

1458   /**

1459   * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.

1460   



Coinary Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1546

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CoinaryToken.sol 

Locations

1545   

1546   pragma solidity ^0.7.0;

1547   

1548   /**

1549   * @title Counters

1550   



Coinary Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1588

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CoinaryToken.sol 

Locations

1587   

1588   pragma solidity >=0.6.0 <0.8.0;

1589   

1590   /**

1591   * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing 

and signing of typed structured data.

1592   



Coinary Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1700

low SEVERITY
The current pragma Solidity directive is "">=0.6.5<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CoinaryToken.sol 

Locations

1699   

1700   pragma solidity >=0.6.5 <0.8.0;

1701   

1702   

1703   

1704   



Coinary Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1780

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CoinaryToken.sol 

Locations

1779   

1780   pragma solidity ^0.7.0;

1781   

1782   /**

1783   * @dev Extension of {ERC20} that adds a cap to the supply of tokens.

1784   



Coinary Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1831

low SEVERITY
The current pragma Solidity directive is ""^0.7.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CoinaryToken.sol 

Locations

1830   

1831   pragma solidity ^0.7.0;

1832   

1833   

1834   

1835   



Coinary Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 93

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- CoinaryToken.sol 

Locations

92   

93   bytes32 lastvalue = set._values[lastIndex];

94   

95   // Move the last value to the index where the value to delete is

96   set._values[toDeleteIndex] = lastvalue;

97   



Coinary Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 96

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- CoinaryToken.sol 

Locations

95   // Move the last value to the index where the value to delete is

96   set._values[toDeleteIndex] = lastvalue;

97   // Update the index for the moved value

98   set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based

99   

100   



Coinary Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 138

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- CoinaryToken.sol 

Locations

137   require(set._values.length > index, "EnumerableSet: index out of bounds");

138   return set._values[index];

139   }

140   

141   // Bytes32Set

142   



Coinary Token | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.



Coinary Token | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.


