
MetaRabbit

Smart Contract
Audit Report

11 Jan 2023



MetaRabbit | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us



MetaRabbit | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

MetaRabbit MetaRabbit Binance Smart Chain

| Addresses

Contract address 0x290e896B78Ec40c5D165C7d397A1AeB240B52023

Contract deployer address 0xa33f375b2E645Aec0312bcdBCc31AB5f8fECDceF

| Project Website

https://t.me/MetaRabbit_office 

| Codebase

https://bscscan.com/address/0x290e896B78Ec40c5D165C7d397A1AeB240B52023#code 

https://t.me/MetaRabbit_office
https://bscscan.com/address/0x290e896B78Ec40c5D165C7d397A1AeB240B52023#code


MetaRabbit | Security Analysis

SUMMARY

The strongest ip of the year, the meta rabbit strikes. Last year, a sentence about selling dogs in the metaverse
became popular in the entire currency circle. We are going to sell rabbits in Yuan Universe this year, and the
cute and sassy Yuan Rabbit is here. We hope you can join us.

| Contract Summary

Documentation Quality

MetaRabbit provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by MetaRabbit with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% ( Through Codebase )

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 517.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 201, 201, 202, 202, 202, 203, 203, 203, 222, 222, 282, 306, 306, 323, 323, 323, 328, 328, 368, 373,
377, 379, 381, 381, 383, 388, 399, 399, 399, 415, 441, 492, 549, 566, 586, 586, 592, 592, 594 and 595.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 7.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 515, 421, 422, 423, 493, 528 and 583.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 481, 549 and
598.



MetaRabbit | Security Analysis

CONCLUSION

We have audited the MetaRabbit project released on January 2023 to discover issues and identify potential
security vulnerabilities in MetaRabbit Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the MetaRabbit smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, a public state variable with array
type causing reachable exception by default, Out of bounds array access, and weak sources of randomness.
We recommend using The current pragma Solidity directive is ""^0.8.14"". It is recommended to specify a fixed
compiler version to ensure that the bytecode produced does not vary between builds. This is especially
important if you rely on bytecode-level verification of the code and Don't use any of those environment
variables as sources of randomness and be aware that the use of these variables introduces a certain level of
trust into miners.



MetaRabbit | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegate calls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS



MetaRabbit | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS



MetaRabbit | Security Analysis

SMART CONTRACT ANALYSIS

Started Tuesday Jan 10 2023 01:31:47 GMT+0000 (Coordinated Universal Time)

Finished Wednesday Jan 11 2023 11:01:48 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File MetaRabbit.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged



SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged



SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110
PUBLIC STATE VARIABLE WITH ARRAY TYPE CAUSING REACHABLE
EXCEPTION BY DEFAULT.

low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 201

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

200   

201   uint256 total = Supply * 10**Decimals;

202   maxTXAmount = (Supply / 100) * 10**Decimals;

203   maxWalletAmount = (Supply / 100) * 10**Decimals;

204   _tTotal = total;

205   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 201

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

200   

201   uint256 total = Supply * 10**Decimals;

202   maxTXAmount = (Supply / 100) * 10**Decimals;

203   maxWalletAmount = (Supply / 100) * 10**Decimals;

204   _tTotal = total;

205   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 202

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

201   uint256 total = Supply * 10**Decimals;

202   maxTXAmount = (Supply / 100) * 10**Decimals;

203   maxWalletAmount = (Supply / 100) * 10**Decimals;

204   _tTotal = total;

205   

206   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 202

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

201   uint256 total = Supply * 10**Decimals;

202   maxTXAmount = (Supply / 100) * 10**Decimals;

203   maxWalletAmount = (Supply / 100) * 10**Decimals;

204   _tTotal = total;

205   

206   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 202

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

201   uint256 total = Supply * 10**Decimals;

202   maxTXAmount = (Supply / 100) * 10**Decimals;

203   maxWalletAmount = (Supply / 100) * 10**Decimals;

204   _tTotal = total;

205   

206   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 203

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

202   maxTXAmount = (Supply / 100) * 10**Decimals;

203   maxWalletAmount = (Supply / 100) * 10**Decimals;

204   _tTotal = total;

205   

206   _balances[ReceiveAddress] = total;

207   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 203

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

202   maxTXAmount = (Supply / 100) * 10**Decimals;

203   maxWalletAmount = (Supply / 100) * 10**Decimals;

204   _tTotal = total;

205   

206   _balances[ReceiveAddress] = total;

207   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 203

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

202   maxTXAmount = (Supply / 100) * 10**Decimals;

203   maxWalletAmount = (Supply / 100) * 10**Decimals;

204   _tTotal = total;

205   

206   _balances[ReceiveAddress] = total;

207   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 222

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

221   

222   holderRewardCondition = 0 * 10**IERC20(USDTAddress).decimals();

223   

224   _tokenDistributor = new TokenDistributor(USDTAddress);

225   }

226   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 222

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

221   

222   holderRewardCondition = 0 * 10**IERC20(USDTAddress).decimals();

223   

224   _tokenDistributor = new TokenDistributor(USDTAddress);

225   }

226   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 282

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

281   _allowances[sender][msg.sender] =

282   _allowances[sender][msg.sender] -

283   amount;

284   }

285   return true;

286   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 306

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

305   if (!_feeWhiteList[from] && !_feeWhiteList[to]) {

306   uint256 maxSellAmount = (balance * 999) / 1000;

307   if (amount > maxSellAmount) {

308   amount = maxSellAmount;

309   }

310   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 306

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

305   if (!_feeWhiteList[from] && !_feeWhiteList[to]) {

306   uint256 maxSellAmount = (balance * 999) / 1000;

307   if (amount > maxSellAmount) {

308   amount = maxSellAmount;

309   }

310   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 323

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

322   if (contractTokenBalance > 0) {

323   uint256 swapFee = _buyFundFee +

324   _buyLPDividendFee +

325   _sellFundFee +

326   _sellLPDividendFee;

327   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 323

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

322   if (contractTokenBalance > 0) {

323   uint256 swapFee = _buyFundFee +

324   _buyLPDividendFee +

325   _sellFundFee +

326   _sellLPDividendFee;

327   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 323

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

322   if (contractTokenBalance > 0) {

323   uint256 swapFee = _buyFundFee +

324   _buyLPDividendFee +

325   _sellFundFee +

326   _sellLPDividendFee;

327   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 328

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

327   

328   uint256 numTokensSellToFund = (amount * swapFee) /

329   5000;

330   if (numTokensSellToFund > contractTokenBalance) {

331   numTokensSellToFund = contractTokenBalance;

332   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 328

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

327   

328   uint256 numTokensSellToFund = (amount * swapFee) /

329   5000;

330   if (numTokensSellToFund > contractTokenBalance) {

331   numTokensSellToFund = contractTokenBalance;

332   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 368

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

367   ) private {

368   _balances[sender] = _balances[sender] - tAmount;

369   uint256 feeAmount;

370   

371   if (takeFee) {

372   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 373

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

372   if (!_swapPairList[recipient])

373   require(tAmount + balanceOf(recipient) <= maxWalletAmount);

374   require(tAmount <= maxTXAmount);

375   uint256 swapFee;

376   if (isSell) {

377   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 377

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

376   if (isSell) {

377   swapFee = _sellFundFee + _sellLPDividendFee;

378   } else {

379   swapFee = _buyFundFee + _buyLPDividendFee;

380   }

381   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 379

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

378   } else {

379   swapFee = _buyFundFee + _buyLPDividendFee;

380   }

381   uint256 swapAmount = (tAmount * swapFee) / 10000;

382   if (swapAmount > 0) {

383   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 381

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

380   }

381   uint256 swapAmount = (tAmount * swapFee) / 10000;

382   if (swapAmount > 0) {

383   feeAmount += swapAmount;

384   _takeTransfer(sender, address(this), swapAmount);

385   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 381

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

380   }

381   uint256 swapAmount = (tAmount * swapFee) / 10000;

382   if (swapAmount > 0) {

383   feeAmount += swapAmount;

384   _takeTransfer(sender, address(this), swapAmount);

385   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 383

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

382   if (swapAmount > 0) {

383   feeAmount += swapAmount;

384   _takeTransfer(sender, address(this), swapAmount);

385   }

386   }

387   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 388

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

387   

388   _takeTransfer(sender, recipient, tAmount - feeAmount);

389   }

390   

391   function swapTokenForFund(uint256 tokenAmount, uint256 swapFee)

392   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 399

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

398   uint256 USDTBalance = USDT.balanceOf(address(_tokenDistributor));

399   uint256 marketingAmount = USDTBalance * (_buyFundFee + _sellFundFee) / swapFee;

400   

401   if (marketingAmount > USDTBalance)

402   marketingAmount = USDTBalance;

403   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 399

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

398   uint256 USDTBalance = USDT.balanceOf(address(_tokenDistributor));

399   uint256 marketingAmount = USDTBalance * (_buyFundFee + _sellFundFee) / swapFee;

400   

401   if (marketingAmount > USDTBalance)

402   marketingAmount = USDTBalance;

403   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 399

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

398   uint256 USDTBalance = USDT.balanceOf(address(_tokenDistributor));

399   uint256 marketingAmount = USDTBalance * (_buyFundFee + _sellFundFee) / swapFee;

400   

401   if (marketingAmount > USDTBalance)

402   marketingAmount = USDTBalance;

403   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 415

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

414   address(this),

415   USDTBalance - marketingAmount

416   );

417   }

418   

419   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 441

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

440   ) private {

441   _balances[to] = _balances[to] + tAmount;

442   emit Transfer(sender, to, tAmount);

443   }

444   

445   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 492

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

491   {

492   for (uint256 i = 0; i < addr.length; i++)

493   _feeWhiteList[addr[i]] = enable;

494   }

495   

496   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 549

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

548   function processReward(uint256 gas) private {

549   if (progressRewardBlock + rewardBlock > block.number) {

550   return;

551   }

552   

553   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 566

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

565   holdTokenTotal =

566   holdToken.totalSupply() -

567   holdToken.balanceOf(deadAddress);

568   

569   address shareHolder;

570   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 586

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

585   if (tokenBalance > rewardThreshold && !excludeHolder[shareHolder]) {

586   amount = (balance * tokenBalance) / holdTokenTotal;

587   if (amount > 0) {

588   USDT.transfer(shareHolder, amount);

589   }

590   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 586

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

585   if (tokenBalance > rewardThreshold && !excludeHolder[shareHolder]) {

586   amount = (balance * tokenBalance) / holdTokenTotal;

587   if (amount > 0) {

588   USDT.transfer(shareHolder, amount);

589   }

590   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 592

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

591   

592   gasUsed = gasUsed + (gasLeft - gasleft());

593   gasLeft = gasleft();

594   currentIndex++;

595   iterations++;

596   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 592

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

591   

592   gasUsed = gasUsed + (gasLeft - gasleft());

593   gasLeft = gasleft();

594   currentIndex++;

595   iterations++;

596   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 594

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

593   gasLeft = gasleft();

594   currentIndex++;

595   iterations++;

596   }

597   

598   



MetaRabbit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 595

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- MetaRabbit.sol 

Locations

594   currentIndex++;

595   iterations++;

596   }

597   

598   progressRewardBlock = block.number;

599   



MetaRabbit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 7

low SEVERITY
The current pragma Solidity directive is ""^0.8.14"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- MetaRabbit.sol 

Locations

6   

7   pragma solidity ^0.8.14;

8   

9   interface IERC20 {

10   function decimals() external view returns (uint8);

11   



MetaRabbit | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 517

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "excludeHolder" is
internal. Other possible visibility settings are public and private. 

Source File
- MetaRabbit.sol 

Locations

516   mapping(address => uint256) public holderIndex;

517   mapping(address => bool) excludeHolder;

518   

519   function addHolder(address adr) private {

520   uint256 size;

521   



MetaRabbit | Security Analysis

SWC-110 | PUBLIC STATE VARIABLE WITH ARRAY TYPE
CAUSING REACHABLE EXCEPTION BY DEFAULT.
LINE 515

low SEVERITY
The public state variable "holders" in "AbsToken" contract has type "address[]" and can cause an exception in
case of use of invalid array index value. 

Source File
- MetaRabbit.sol 

Locations

514   

515   address[] public holders;

516   mapping(address => uint256) public holderIndex;

517   mapping(address => bool) excludeHolder;

518   

519   



MetaRabbit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 421

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- MetaRabbit.sol 

Locations

420   address[] memory path = new address[](3);

421   path[0] = address(this);

422   path[1] = _swapRouter.WETH();

423   path[2] = _USDT;

424   

425   



MetaRabbit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 422

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- MetaRabbit.sol 

Locations

421   path[0] = address(this);

422   path[1] = _swapRouter.WETH();

423   path[2] = _USDT;

424   

425   _approve(address(this), address(_swapRouter), tokenAmount);

426   



MetaRabbit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 423

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- MetaRabbit.sol 

Locations

422   path[1] = _swapRouter.WETH();

423   path[2] = _USDT;

424   

425   _approve(address(this), address(_swapRouter), tokenAmount);

426   

427   



MetaRabbit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 493

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- MetaRabbit.sol 

Locations

492   for (uint256 i = 0; i < addr.length; i++)

493   _feeWhiteList[addr[i]] = enable;

494   }

495   

496   function setSwapPairList(address addr, bool enable) external onlyOwner {

497   



MetaRabbit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 528

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- MetaRabbit.sol 

Locations

527   if (0 == holderIndex[adr]) {

528   if (0 == holders.length || holders[0] != adr) {

529   holderIndex[adr] = holders.length;

530   holders.push(adr);

531   }

532   



MetaRabbit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 583

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- MetaRabbit.sol 

Locations

582   }

583   shareHolder = holders[currentIndex];

584   tokenBalance = holdToken.balanceOf(shareHolder);

585   if (tokenBalance > rewardThreshold && !excludeHolder[shareHolder]) {

586   amount = (balance * tokenBalance) / holdTokenTotal;

587   



MetaRabbit | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 481

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners. 

Source File
- MetaRabbit.sol 

Locations

480   require(0 == startTradeBlock, "trading");

481   startTradeBlock = block.number;

482   }

483   

484   function setFeeWhiteList(address addr, bool enable) external onlyOwner {

485   



MetaRabbit | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 549

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners. 

Source File
- MetaRabbit.sol 

Locations

548   function processReward(uint256 gas) private {

549   if (progressRewardBlock + rewardBlock > block.number) {

550   return;

551   }

552   

553   



MetaRabbit | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 598

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners. 

Source File
- MetaRabbit.sol 

Locations

597   

598   progressRewardBlock = block.number;

599   }

600   

601   function setHolderRewardCondition(uint256 amount) external onlyOwner {

602   



MetaRabbit | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.



MetaRabbit | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.


