
Zodiac

Smart Contract
Audit Report

15 Jan 2023

Zodiac | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Zodiac | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

ZODIAC ZODIAC BSC

| Addresses

Contract address 0x27dFE1c82EE68Ba2AFBe83126530cd32D437af7d

Contract deployer address 0xC4AE78492D08cf60C1b96DfF9C04a3A7aB1F6384

| Project Website

https://zodiacoin.io/

| Codebase

https://bscscan.com/address/0x27dFE1c82EE68Ba2AFBe83126530cd32D437af7d#code

https://zodiacoin.io/
https://bscscan.com/address/0x27dFE1c82EE68Ba2AFBe83126530cd32D437af7d#code

Zodiac | Security Analysis

SUMMARY

Zodiac has a unique contract that works in a way whereby every time an investor buys/sells, they instantly earn
extra tokens and also provide ZODIAC rewards to holders of $Zodiac | Renounced Ownership | Zodiac Grow
blockchain | WALLET | GAMES | BRIDGE | MARKET PLACE | 8% Tax | 999-day liquidity lock | Protoken Pinksale
Contract | CMC&CG fast track. Unlocked tokens go to the next token "Aries" in 15 days. View our website /TG
to learn more about the contract and utilities!

| Contract Summary

Documentation Quality

This project has a standard of documentation.

Technical description provided.

Code Quality

The quality of the code in this project is up to standard.

The official Solidity style guide is followed.

Test Scope

Project test coverage is 100% (Via Codebase).

| Audit Findings Summary

SWC-101 | Arithmetic operation issues discovered on lines 116, 152, 175, 176, 215, 255, 282, 286, 298,
305, 314, 405, 1056, 1228, 1247, 1248, 1252, 1550, 1641, 1662, 1677, 1686, 1783, 1802, 1850, 1876,
1882, 1895, 1903, 2240, 2250, 2253, 2321, 2400, 2402, 2443, 2469, 2476, 2555, 2560, and 2572.
SWC-101 | Compiler-rewritable issue discovered on lines 405 and 2402.
SWC-103 | A floating pragma is set. Issue discovered on line 7, the current pragma Solidity directive is
""^0.8.15"".
SWC-108 | State variable visibility is not set. Issues were discovered on lines 1039, 1147, 1148, 1149,
1151, 1152, 1153, and 1155.
SWC-110 | Out of bounds array access discovered on lines 374, 406, 411, 1254, 1255, 1643, 1644, 1646,
1647, 1953, 1954, 1971, 1972, 1993, 1994, 1995, 2246, 2401, and 2042.
SWC-115 | Use of "tx.origin" as a part of authorization control. Issues were discovered on lines 1824 and
2429.

Zodiac | Security Analysis

CONCLUSION

We have audited the Zodiac project which has released on January 2023, to discover issues and identify
potential security vulnerabilities in Zodiac Project. This process is used to find technical issues and security
loopholes that find common issues in the code.

The security audit report produced satisfactory results with low-risk issues.

The most common issue found in writing code on contracts that do not pose a big risk is that writing on
contracts is close to the standard of writing contracts in general. The low-level issue found is a floating
pragma is set, state variable visibility is not set on some lines, the use of "tx.origin" as a part of authorization
control and out of bounds array access which the index access expression can cause an exception in case of
use of an invalid array index value.

Zodiac | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Check-Effect
Interaction

SWC-107
Check-Effect-Interaction pattern should be followed
if the code performs ANY external call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Zodiac | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Zodiac | Security Analysis

SMART CONTRACT ANALYSIS

Started SAT Jan 14 2023 23:14:51 GMT+0000 (Coordinated Universal Time)

Finished Sun Jan 15 2023 00:14:51 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Zodiac.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 116

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

115 function add(uint256 a, uint256 b) internal pure returns (uint256) {

116 uint256 c = a + b;

117 require(c >= a, "SafeMath: addition overflow");

118

119 return c;

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 152

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

151 require(b <= a, errorMessage);

152 uint256 c = a - b;

153

154 return c;

155 }

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 175

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

174

175 uint256 c = a * b;

176 require(c / a == b, "SafeMath: multiplication overflow");

177

178 return c;

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 176

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

175 uint256 c = a * b;

176 require(c / a == b, "SafeMath: multiplication overflow");

177

178 return c;

179 }

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 215

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

214 require(b > 0, errorMessage);

215 uint256 c = a / b;

216 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

217

218 return c;

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 255

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

254 require(b != 0, errorMessage);

255 return a % b;

256 }

257 }

258

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 282

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

281 function mul(int256 a, int256 b) internal pure returns (int256) {

282 int256 c = a * b;

283

284 // Detect overflow when multiplying MIN_INT256 with -1

285 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 286

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

285 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

286 require((b == 0) || (c / b == a));

287 return c;

288 }

289

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 298

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

297 // Solidity already throws when dividing by 0.

298 return a / b;

299 }

300

301 /**

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 305

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

304 function sub(int256 a, int256 b) internal pure returns (int256) {

305 int256 c = a - b;

306 require((b >= 0 && c <= a) || (b < 0 && c > a));

307 return c;

308 }

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 314

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

313 function add(int256 a, int256 b) internal pure returns (int256) {

314 int256 c = a + b;

315 require((b >= 0 && c >= a) || (b < 0 && c < a));

316 return c;

317 }

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 405

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

404 uint256 index = map.indexOf[key];

405 uint256 lastIndex = map.keys.length - 1;

406 address lastKey = map.keys[lastIndex];

407

408 map.indexOf[lastKey] = index;

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1056

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1055 uint256 public _tDividendTotal = 0;

1056 uint256 internal constant magnitude = 2**128;

1057 uint256 internal magnifiedDividendPerShare;

1058 mapping(address => int256) internal magnifiedDividendCorrections;

1059 mapping(address => uint256) internal withdrawnDividends;

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1228

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1227 _tTotal = amountOfTokenWei;

1228 _rTotal = (MAX - (MAX % _tTotal));

1229

1230 _rOwned[_msgSender()] = _rTotal;

1231

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1247

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1246

1247 _maxTxAmount = _tTotal.mul(setMxTxPer).div(10**4);

1248 _maxWalletAmount = _tTotal.mul(setMxWalletPer).div(10**4);

1249

1250 swapAmount = amountOfTokenWei.mul(1).div(10000);

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1248

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1247 _maxTxAmount = _tTotal.mul(setMxTxPer).div(10**4);

1248 _maxWalletAmount = _tTotal.mul(setMxWalletPer).div(10**4);

1249

1250 swapAmount = amountOfTokenWei.mul(1).div(10000);

1251

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1252

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1251

1252 buyBackUpperLimit = 10**18;

1253

1254 router = _addrs[0];

1255 payable(_addrs[1]).transfer(msg.value);

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1550

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1549 require(

1550 amount >= (10**decimals()) && amount <= totalSupply().div(100),

1551 "not valid amount"

1552);

1553 swapAmount = amount;

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1641

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1640 uint256 tSupply = _tTotal;

1641 for (uint256 i = 0; i < _excluded.length; i++) {

1642 if (

1643 _rOwned[_excluded[i]] > rSupply ||

1644 _tOwned[_excluded[i]] > tSupply

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1662

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1661 function calculateTaxFee(uint256 _amount) private view returns (uint256) {

1662 return _amount.mul(_taxFee).div(10**2);

1663 }

1664

1665 function calculateLiquidityFee(uint256 _amount)

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1677

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1676 .mul(

1677 _liquidityFee +

1678 _burnFee +

1679 _walletFee +

1680 _buybackFee +

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1686

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1685)

1686 .div(10**2);

1687 }

1688

1689 function removeAllFee() private {

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1783

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1782 require(

1783 contractBalanceRecepient + amount <= _maxWalletAmount,

1784 "Exceeds maximum wallet amount"

1785);

1786 }

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1802

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1801 uint256 balance = address(this).balance;

1802 if (balance > uint256(1 * 10**uint256(_decimals))) {

1803 if (balance > buyBackUpperLimit)

1804 balance = buyBackUpperLimit;

1805

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1850

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1849 function swapAndLiquify(uint256 contractTokenBalance) private lockTheSwap {

1850 uint8 totFee = _burnFee +

1851 _walletFee +

1852 _liquidityFee +

1853 _buybackFee +

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1876

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1875

1876 totSpentAmount = totSpentAmount + spentAmount;

1877 }

1878

1879 if (_buybackFee != 0) {

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1882

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1881 swapTokensForBNB(spentAmount);

1882 totSpentAmount = totSpentAmount + spentAmount;

1883 }

1884

1885 if (_walletCharityFee != 0) {

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1895

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1894

1895 totSpentAmount = totSpentAmount + spentAmount;

1896 }

1897

1898 if (_walletDevFee != 0) {

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1903

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1902

1903 totSpentAmount = totSpentAmount + spentAmount;

1904 }

1905

1906 if (_rewardFee != 0) {

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2240

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2239 while (gasUsed < gas && iterations < numberOfTokenHolders) {

2240 _lastProcessedIndex++;

2241

2242 if (_lastProcessedIndex >= tokenHoldersMap.keys.length) {

2243 _lastProcessedIndex = 0;

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2250

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2249 if (processAccount(payable(account), true)) {

2250 claims++;

2251 }

2252 }

2253 iterations++;

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2253

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2252 }

2253 iterations++;

2254 uint256 newGasLeft = gasleft();

2255 if (gasLeft > newGasLeft) {

2256 gasUsed = gasUsed.add(gasLeft.sub(newGasLeft));

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 2321

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2320 return

2321 magnifiedDividendPerShare

2322 .mul(balanceOf(_owner))

2323 .toInt256Safe()

2324 .add(magnifiedDividendCorrections[_owner])

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2400

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2399 require(_isExcluded[account], "Already excluded");

2400 for (uint256 i = 0; i < _excluded.length; i++) {

2401 if (_excluded[i] == account) {

2402 _excluded[i] = _excluded[_excluded.length - 1];

2403 _tOwned[account] = 0;

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2402

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2401 if (_excluded[i] == account) {

2402 _excluded[i] = _excluded[_excluded.length - 1];

2403 _tOwned[account] = 0;

2404 _isExcluded[account] = false;

2405 _excluded.pop();

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 2443

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2442 magnifiedDividendPerShare = magnifiedDividendPerShare.add(

2443 (amount).mul(magnitude) / _tDividendTotal

2444);

2445 emit DividendsDistributed(amount);

2446

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 2469

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2468 function _dmint(address account, uint256 value) internal {

2469 _tDividendTotal = _tDividendTotal + value;

2470 magnifiedDividendCorrections[account] = magnifiedDividendCorrections[

2471 account

2472].sub((magnifiedDividendPerShare.mul(value)).toInt256Safe());

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2476

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2475 function _dburn(address account, uint256 value) internal {

2476 _tDividendTotal = _tDividendTotal - value;

2477 magnifiedDividendCorrections[account] = magnifiedDividendCorrections[

2478 account

2479].add((magnifiedDividendPerShare.mul(value)).toInt256Safe());

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 2555

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2554 function setBuybackUpperLimit(uint256 buyBackLimit) external onlyOwner {

2555 buyBackUpperLimit = buyBackLimit * (10**18);

2556 }

2557

2558 function setMaxTxPercent(uint256 maxTxPercent) external onlyOwner {

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 2560

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2559 require(maxTxPercent >= minMxTxPercentage && maxTxPercent <= 10000, "err");

2560 _maxTxAmount = _tTotal.mul(maxTxPercent).div(10**4);

2561 }

2562

2563 function excludeFromMaxTx(address account, bool isExcluded) public onlyOwner {

Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 2572

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2571);

2572 _maxWalletAmount = _tTotal.mul(maxWalletPercent).div(10**4);

2573 }

2574

2575 function excludeFromMaxWallet(address account, bool isExcluded)

Zodiac | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 405

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

404 uint256 index = map.indexOf[key];

405 uint256 lastIndex = map.keys.length - 1;

406 address lastKey = map.keys[lastIndex];

407

408 map.indexOf[lastKey] = index;

Zodiac | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 2402

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2401 if (_excluded[i] == account) {

2402 _excluded[i] = _excluded[_excluded.length - 1];

2403 _tOwned[account] = 0;

2404 _isExcluded[account] = false;

2405 _excluded.pop();

Zodiac | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 7

low SEVERITY
The current pragma Solidity directive is ""^0.8.15"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Zodiac.sol

Locations

6

7 pragma solidity ^0.8.15;

8

9 interface IERC20 {

10 function totalSupply() external view returns (uint256);

Zodiac | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1039

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "dead" is internal.
Other possible visibility settings are public and private.

Source File
- Zodiac.sol

Locations

1038

1039 address dead = address(0xdead);

1040

1041 uint8 public maxLiqFee = 10;

1042 uint8 public maxTaxFee = 10;

Zodiac | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1147

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "walletFeeInBNB" is
internal. Other possible visibility settings are public and private.

Source File
- Zodiac.sol

Locations

1146

1147 bool walletFeeInBNB;

1148 bool walletCharityFeeInBNB;

1149 bool walletDevFeeInBNB;

1150

Zodiac | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1148

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"walletCharityFeeInBNB" is internal. Other possible visibility settings are public and private.

Source File
- Zodiac.sol

Locations

1147 bool walletFeeInBNB;

1148 bool walletCharityFeeInBNB;

1149 bool walletDevFeeInBNB;

1150

1151 address marketingFeeToken;

Zodiac | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1149

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "walletDevFeeInBNB"
is internal. Other possible visibility settings are public and private.

Source File
- Zodiac.sol

Locations

1148 bool walletCharityFeeInBNB;

1149 bool walletDevFeeInBNB;

1150

1151 address marketingFeeToken;

1152 address charityFeeToken;

Zodiac | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1151

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "marketingFeeToken"
is internal. Other possible visibility settings are public and private.

Source File
- Zodiac.sol

Locations

1150

1151 address marketingFeeToken;

1152 address charityFeeToken;

1153 address devFeeToken;

1154

Zodiac | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1152

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "charityFeeToken" is
internal. Other possible visibility settings are public and private.

Source File
- Zodiac.sol

Locations

1151 address marketingFeeToken;

1152 address charityFeeToken;

1153 address devFeeToken;

1154

1155 bool inSwapAndLiquify;

Zodiac | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1153

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "devFeeToken" is
internal. Other possible visibility settings are public and private.

Source File
- Zodiac.sol

Locations

1152 address charityFeeToken;

1153 address devFeeToken;

1154

1155 bool inSwapAndLiquify;

1156 bool public swapAndLiquifyEnabled = true;

Zodiac | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1155

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- Zodiac.sol

Locations

1154

1155 bool inSwapAndLiquify;

1156 bool public swapAndLiquifyEnabled = true;

1157

1158 uint256 public _maxTxAmount;

Zodiac | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1824

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- Zodiac.sol

Locations

1823 gas,

1824 tx.origin

1825);

1826 }

1827 }

Zodiac | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1920

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- Zodiac.sol

Locations

1919 gas,

1920 tx.origin

1921);

1922 }

1923

Zodiac | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 2429

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- Zodiac.sol

Locations

2428 gas,

2429 tx.origin

2430);

2431 }

2432

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 374

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

373 {

374 return map.keys[index];

375 }

376

377 function size(Map storage map) internal view returns (uint256) {

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 406

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

405 uint256 lastIndex = map.keys.length - 1;

406 address lastKey = map.keys[lastIndex];

407

408 map.indexOf[lastKey] = index;

409 delete map.indexOf[key];

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 411

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

410

411 map.keys[index] = lastKey;

412 map.keys.pop();

413 }

414 }

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1254

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1253

1254 router = _addrs[0];

1255 payable(_addrs[1]).transfer(msg.value);

1256

1257 IUniswapV2Router02 _pcsV2Router = IUniswapV2Router02(router);

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1255

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1254 router = _addrs[0];

1255 payable(_addrs[1]).transfer(msg.value);

1256

1257 IUniswapV2Router02 _pcsV2Router = IUniswapV2Router02(router);

1258 // Create a uniswap pair for this new token

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1643

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1642 if (

1643 _rOwned[_excluded[i]] > rSupply ||

1644 _tOwned[_excluded[i]] > tSupply

1645) return (_rTotal, _tTotal);

1646 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1644

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1643 _rOwned[_excluded[i]] > rSupply ||

1644 _tOwned[_excluded[i]] > tSupply

1645) return (_rTotal, _tTotal);

1646 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1647 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1646

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1645) return (_rTotal, _tTotal);

1646 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1647 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1648 }

1649 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1647

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1646 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1647 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1648 }

1649 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1650 return (rSupply, tSupply);

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1953

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1952 address[] memory path = new address[](2);

1953 path[0] = address(this);

1954 path[1] = pcsV2Router.WETH();

1955

1956 _approve(address(this), address(pcsV2Router), tokenAmount);

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1954

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1953 path[0] = address(this);

1954 path[1] = pcsV2Router.WETH();

1955

1956 _approve(address(this), address(pcsV2Router), tokenAmount);

1957

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1971

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1970 address[] memory path = new address[](2);

1971 path[0] = pcsV2Router.WETH();

1972 path[1] = address(this);

1973

1974 // make the swap

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1972

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1971 path[0] = pcsV2Router.WETH();

1972 path[1] = address(this);

1973

1974 // make the swap

1975 pcsV2Router.swapExactETHForTokensSupportingFeeOnTransferTokens{

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1993

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1992 address[] memory path = new address[](3);

1993 path[0] = address(this);

1994 path[1] = pcsV2Router.WETH();

1995 path[2] = feeToken;

1996

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1994

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1993 path[0] = address(this);

1994 path[1] = pcsV2Router.WETH();

1995 path[2] = feeToken;

1996

1997 _approve(address(this), address(pcsV2Router), tokenAmount);

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1995

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1994 path[1] = pcsV2Router.WETH();

1995 path[2] = feeToken;

1996

1997 _approve(address(this), address(pcsV2Router), tokenAmount);

1998

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2246

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

2245

2246 address account = tokenHoldersMap.keys[_lastProcessedIndex];

2247

2248 if (canAutoClaim(lastClaimTimes[account])) {

2249 if (processAccount(payable(account), true)) {

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2401

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

2400 for (uint256 i = 0; i < _excluded.length; i++) {

2401 if (_excluded[i] == account) {

2402 _excluded[i] = _excluded[_excluded.length - 1];

2403 _tOwned[account] = 0;

2404 _isExcluded[account] = false;

Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2402

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

2401 if (_excluded[i] == account) {

2402 _excluded[i] = _excluded[_excluded.length - 1];

2403 _tOwned[account] = 0;

2404 _isExcluded[account] = false;

2405 _excluded.pop();

Zodiac | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Zodiac | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

