l {@p ::
NG
0
o°o

Zodiac

Smart Contract
Audit Report

@ SYSFIXED 15 Jan 2023

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

Zodiac | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

Zodiac | Security Analysis

Project name Token ticker Blockchain
ZODIAC ZODIAC BSC
| Addresses

Contract address

0x27dFE1c82EE68Ba2AFBe83126530cd32D437af7d

Contract deployer address

0xC4AE78492D08cf60C1b96DfF9C04a3A7aB1F6384

| Project Website

https://zodiacoin.io/

| Codebase

https://bscscan.com/address/0x27dFE1c82EE68Ba2AFBe83126530cd32D437af7d#code

https://zodiacoin.io/
https://bscscan.com/address/0x27dFE1c82EE68Ba2AFBe83126530cd32D437af7d#code

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SUMMARY

Zodiac has a unique contract that works in a way whereby every time an investor buys/sells, they instantly earn
extra tokens and also provide ZODIAC rewards to holders of $Zodiac | Renounced Ownership | Zodiac Grow
blockchain | WALLET | GAMES | BRIDGE | MARKET PLACE | 8% Tax | 999-day liquidity lock | Protoken Pinksale
Contract | CMC&CG fast track. Unlocked tokens go to the next token "Aries" in 15 days. View our website /TG
to learn more about the contract and utilities!

| Contract Summary

Documentation Quality

This project has a standard of documentation.
e Technical description provided.

Code Quality

The quality of the code in this project is up to standard.
e The official Solidity style guide is followed.

Test Scope

Project test coverage is 100% (Via Codebase).

| Audit Findings Summary

SWC-101 | Arithmetic operation issues discovered on lines 116, 152, 175, 176, 215, 255, 282, 286, 298,
305, 314, 405, 1056, 1228, 1247, 1248, 1252, 1550, 1641, 1662, 1677, 1686, 1783, 1802, 1850, 1876,
1882, 1895, 1903, 2240, 2250, 2253, 2321, 2400, 2402, 2443, 2469, 2476, 2555, 2560, and 2572.
SWC-101 | Compiler-rewritable issue discovered on lines 405 and 2402.

SWC-103 | A floating pragma is set. Issue discovered on line 7, the current pragma Solidity directive is
""A0.8.15"".

SWC-108 | State variable visibility is not set. Issues were discovered on lines 1039, 1147, 1148, 1149,
1151,1152, 1153, and 1155.

SWC-110 | Out of bounds array access discovered on lines 374, 406, 411, 1254, 1255, 1643, 1644, 1646,
1647,1953, 1954, 1971, 1972, 1993, 1994, 1995, 2246, 2401, and 2042.

SWC-115 | Use of "tx.origin" as a part of authorization control. Issues were discovered on lines 1824 and
2429.

@ SYSFIXED Zodiac | Security Analysis

CONCLUSION

We have audited the Zodiac project which has released on January 2023, to discover issues and identify
potential security vulnerabilities in Zodiac Project. This process is used to find technical issues and security
loopholes that find common issues in the code.

The security audit report produced satisfactory results with low-risk issues.

The most common issue found in writing code on contracts that do not pose a big risk is that writing on
contracts is close to the standard of writing contracts in general. The low-level issue found is a floating
pragma is set, state variable visibility is not set on some lines, the use of "tx.origin" as a part of authorization
control and out of bounds array access which the index access expression can cause an exception in case of
use of an invalid array index value.

£ SYSFIXED

AUDIT RESULT

Zodiac | Security Analysis

Dependency should not be possible.

Article Category Description Result
Functions and state variables visibility should be
- SWC-100 - . - ISSUE
Default Visibility set explicitly. Visibility levels should be specified
SWC-108 . FOUND
consciously.
Integer Overflow SRk T If unchecked math is used, all math operations ISSUE
and Underflow should be safe from overflows and underflows. FOUND
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.
Check-Effect Check-Effect-Interaction pattern should be followed
: SWcC-107) PASS
Interaction if the code performs ANY external call.
R Properly functioning code should never reach a ISSUE
Assert Violation SWC-110 »
failing assert statement. FOUND
Deprecated Solidit
s . < SWC-111 Deprecated built-in functions should never be used. PASS
Functions
Delegate call to Delegatecalls should only be allowed to trusted
SWC-112 PASS
Untrusted Caller addresses.
DoS (Denial of SWC-113 Execution of the code should never be blocked by a PASS
Service) SWC-128 specific contract state unless required.
. Race Conditions and Transactions Order
Race Conditions SWC-114 PASS

@‘S\FSFHEU Zodiac | Security Analysis

Authorization s e ISSUE
o SWC-115 | tx.origin should not be used for authorization.
through tx.origin FOUND
Block values as a . .
. SWC-116 | Block numbers should not be used for time calculations. PASS
proxy for time
. . SWC-117 . _)
Signature Unique Signed messages should always have a unique id. A
SWC-121 _)) PASS
Id transaction hash should not be used as a unique id.
SWC-122
Shadowing State
. g SWC-119 State variables should not be shadowed. PASS
Variable
Weak Sources of Random values should never be generated from Chain
SWC-120)) PASS
Randomness Attributes or be predictable.
When inheriting multiple contracts, especially if they have
Incorrect identical functions, a developer should carefully specify
. SWC-125 | |) _) PASS
Inheritance Order inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

@sﬁrmm Zodiac | Security Analysis

SMART CONTRACT ANALYSIS

Started SAT Jan 14 2023 23:14:51 GMT+0000 (Coordinated Universal Time)
Finished Sun Jan 152023 00:14:51 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File Zodiac.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

£ SYSFIXED

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

£ SYSFIXED

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED low | acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low | acknowledged
SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED low | acknowledged
SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED low | acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low | acknowledged
SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED low | acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low | acknowledged
SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low | acknowledged
SWC-101 COMPILER-REWRITABLE "<UINT>- 1" DISCOVERED low | acknowledged
SWC-103 | AFLOATING PRAGMA IS SET. low | acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low | acknowledged
SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET. low | acknowledged
SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET. low | acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low | acknowledged
SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET. low | acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low | acknowledged
SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET. low | acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low | acknowledged
SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low | acknowledged
SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low | acknowledged

£ SYSFIXED

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low | acknowledged
SWC-110 | OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 | OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 | OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 | OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low | acknowledged

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 116

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

115 function add(uint256 a, uint256 b) internal pure returns (uint256) {
116 uint256 ¢ = a + b;

117 require(c >= a, "SafeMath: addition overflow');

118

119 return c;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 152

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

151 requi re(b <= a, errorMessage);
152 uint256 ¢ = a - b;

153

154 return c;

155 }

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 175

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

174

175 uint256 ¢ = a * b;

176 require(c / a == b, "SafeMath: multiplication overflow');
177

178 return c;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 176

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

175 uint256 ¢ = a * b;

176 require(c / a == b, "SafeMath: nultiplication overflow');
177

178 return c;

179 }

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 215

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

214 requi re(b > 0, errorMessage);

215 uint256 ¢ = a/ b;

216 /]l assert(a ==b * ¢c + a %b); // There is no case in which this doesn't hold
217

218 return c;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 255

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

254 require(b !'= 0, errorMessage);
255 return a % b;

256 }

257 '}

258

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 282

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol
Locations
281 function mul (i nt256 a, int256 b) internal pure returns (int256) {
282 int256 ¢ = a * b;
283
284 /1l Detect overflow when multiplying MN_INT256 with -1
285 require(c !'= MN_INT256 || (a & MN_INT256) !'= (b & M N_INT256));

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 286

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

285 require(c '= MN_INT256 || (a & MN_INT256) !'= (b & M N_INT256));
286 require((b ==0) || (c/ b ==a));

287 return c;

288 }

289

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 298

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

297 /1 Solidity already throws when dividing by O.
298 return a / b;

299 }

300

301/ **

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 305

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

304 function sub(int256 a, int256 b) internal pure returns (int256) {
305 int256 ¢ = a - b;

306 require((b >=0 & c <=a) || (b <0 &k c > a));

307 return c;

308 }

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED

LINE 314

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

313 function add(int256 a, int256 b) internal pure returns (int256) {
314 int256 ¢ = a + b;

315 require((b >=0 & c >=a) || (b <0 &k c < a));

316 return c;

317 }

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 405

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

404 ui nt 256 i ndex = map.indexX [key];

405 ui nt 256 | astlndex = nmap. keys.length - 1;
406 address | ast Key = nmap. keys[| ast | ndex] ;
407

408 map. i ndexXf [| ast Key] = i ndex;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1056

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1055 ui nt 256 public _tDividendTotal = 0;

1056 ui nt 256 i nternal constant magni tude = 2**128;

1057 ui nt 256 i nternal magnifiedD vi dendPer Shar e;

1058 mappi ng(address => int256) internal magnifiedDi vi dendCorrections;
1059 mappi ng(address => ui nt256) internal wthdrawnDi vi dends;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1228

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1227 _tTot al
1228 _rTot al
1229

1230 _rOmed[_nsgSender()] = _rTotal;
1231

amount Of TokenWei ;
(MAX - (MAX % _tTotal));

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1247

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1246

1247 _maxTxAmount = _tTotal . nul (set MkTxPer). di v(10**4);

1248 _nmaxWal | et Anount = _tTotal . nul (set MxVal | et Per) . di v(10**4);
1249

1250 swapAnount = anpunt OF TokenWei . nul (1) . di v(10000);

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1248

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1247 _maxTxAmount = _tTotal . nul (set MkTxPer). di v(10**4);

1248 _maxVal | et Amount = _tTotal . mul (set MkWal | et Per) . di v(10**4);
1249

1250 swapAmount = anount OF TokenWei . mul (1) . di v(10000) ;

1251

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1252

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1251

1252 buyBackUpperLinmt = 10**18;

1253

1254 router = _addrs[O0];

1255 payabl e(_addrs[1]).transfer(nsg. val ue);

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1550

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1549 require(

1550 amount >= (10**deci nal s()) && anmount <= total Supply().div(100)
1551 "not valid anount”

1552);

1553 swapAnmount = anount;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1641

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1640 ui nt 256 tSupply = _tTotal;

1641 for (uint256 i = 0; i < _excluded.length; i++) {
1642 if (

1643 _rOwned[_excluded[i]] > rSupply ||

1644 _tOwned[_excluded[i]] > tSupply

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1662

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1661 function cal cul at eTaxFee(ui nt256 _anount) private view returns (uint256) {
1662 return _amount. mul (_t axFee). di v(10**2);

1663 }

1664

1665 function cal cul at eLi qui di t yFee(ui nt 256 _anount)

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1677

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1676 .mul (

1677 _liquidityFee +
1678 _burnFee +

1679 _wal | et Fee +
1680 _buybackFee +

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1686

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1685)

1686 . div(10%*2);

1687 }

1688

1689 function renoveAl |l Fee() private {

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1783

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1782 require(

1783 contract Bal anceRecepi ent + ampbunt <= _max\Wal | et Anount,
1784 "Exceeds maxi nrum wal | et amount "

1785);

1786 }

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1802

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1801 ui nt 256 bal ance = address(this). bal ance;

1802 if (balance > uint256(1 * 10**ui nt 256(_deci mals))) {
1803 i f (bal ance > buyBackUpperLimt)

1804 bal ance = buyBackUpperLimt;

1805

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1850

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1849 function swapAndLi qui fy(ui nt 256 contract TokenBal ance) private | ockTheSwap {
1850 uint8 totFee = burnFee +

1851 _wal | et Fee +

1852 _liquidityFee +

1853 _buybackFee +

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1876

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1875

1876 t ot Spent Ampunt = t ot Spent Anbunt + spent Anount ;
1877 }

1878

1879 i f (_buybackFee !'= 0) {

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1882

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1881 swapTokensFor BNB(spent Anount) ;

1882 t ot Spent Ampunt = t ot Spent Anbunt + spent Anount ;
1883 }

1884

1885 if (_walletCharityFee != 0) {

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1895

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1894

1895 t ot Spent Ampunt = t ot Spent Anbunt + spent Anount ;
1896 }

1897

1898 if (_walletDevFee = 0) {

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1903

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

1902

1903 t ot Spent Ampunt = t ot Spent Anbunt + spent Anount ;
1904 }

1905

1906 if (_rewardFee !'= 0) {

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2240

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2239 whil e (gasUsed < gas && iterations < nunber O TokenHol ders) {
2240 _last Processedl ndex++;

2241

2242 if (_lastProcessedl ndex >= tokenHol der sMap. keys. | ength) {
2243 |l astProcessedl ndex = 0;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2250

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2249 i f (processAccount (payabl e(account), true)) {
2250 cl ai ns++

2251 }

2252 }

2253 iterations++

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2253

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2252 }

2253 iterations++;

2254 ui nt 256 newGasLeft = gasleft();

2255 if (gasLeft > newGasLeft) {

2256 gasUsed = gasUsed. add(gasLeft. sub(newGaslLeft));

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 2321

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2320 return

2321 magni fi edDi vi dendPer Shar e

2322 . mul (bal anceOf (_owner))

2323 .tol nt 256Saf e()

2324 .add(magni fi edDi vi dendCorrections[_owner])

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2400

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2399 requi re(_i sexcl uded[account], "Already excluded");

2400 for (uint256 i = 0; i < _excluded.length; i++) {
2401 if (_excluded[i] == account) {
2402 _excluded[i] = _excluded[_excluded.length - 1];

2403 _tOmned[account] = 0;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2402

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol
Locations
2401 if (_excluded[i] == account) {
2402 _excluded[i] = _excluded[_excluded.length - 1];
2403 _t Omed[account] = 0;
2404 _i sExcl uded[account] = fal se;
2405 _excl uded. pop();

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 2443

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2442 magni fi edDi vi dendPer Share = nagni fi edDi vi dendPer Shar e. add(
2443 (amount) . mul (nagni tude) / _tDividendTot al

2444),

2445 em t DividendsDi stributed(anount);

2446

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 2469

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol
Locations
2468 function _dm nt(address account, uint256 value) internal {
2469 _tDividendTotal = _tDividendTotal + val ue;
2470 magni fi edDi vi dendCorrections[account] = magnifiedD videndCorrections]
2471 account
2472].sub((magni fi edDi vi dendPer Shar e. nul (val ue)).tol nt256Safe());

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2476

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol
Locations
2475 function _dburn(address account, uint256 value) internal {
2476 _tDividendTotal = _tDividendTotal - val ue;
2477 magni fi edDi vi dendCorrections[account] = magnifiedD videndCorrections]
2478 account
2479] . add((rmagni fi edDi vi dendPer Shar e. nul (val ue)).tol nt256Safe());

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 2555

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2554 function set BuybackUpperLi mt(uint256 buyBackLinmit) external onlyOmer {
2555 buyBackUpperLimt = buyBackLinmt * (10**18);

2556 }

2557

2558 function set MaxTxPercent (ui nt 256 maxTxPercent) external onlyOmer {

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 2560

low SEVERITY

This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2559 requi re(maxTxPercent >= m nMKTxPercent age &% maxTxPercent <= 10000, "err™")
2560 _maxTxAmount = _tTotal . mul (maxTxPercent). di v(10**4);

2561 }

2562

2563 function excl udeFroniVaxTx(address account, bool isExcluded) public onlyOwer {

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 2572

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

2571);

2572 _max\Wal | et Amtount = _tTotal . nul (naxWal | et Percent). di v(10**4);
2573 }

2574

2575 function excl udeFronivax\Wal | et (address account, bool isExcl uded)

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 405

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol

Locations

404 ui nt 256 i ndex = map.indexX [key];

405 ui nt 256 | astlndex = nmap. keys.length - 1;
406 address | ast Key = nmap. keys[| ast | ndex] ;
407

408 map. i ndexXf [| ast Key] = i ndex;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 2402

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- Zodiac.sol
Locations
2401 if (_excluded[i] == account) {
2402 _excluded[i] = _excluded[_excluded.length - 1];
2403 _t Omed[account] = 0;
2404 _i sExcl uded[account] = fal se;
2405 _excl uded. pop();

@‘S\FSFHEU Zodiac | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 7

low SEVERITY

The current pragma Solidity directive is ""*0.8.15"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Zodiac.sol
Locations
6
7 pragma solidity ~0.8. 15;
8
9 interface | ERC20 {
10 function total Supply() external view returns (uint256);

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1039

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "dead" is internal.
Other possible visibility settings are public and private.

Source File

- Zodiac.sol

Locations
1038
1039 address dead = address(0Oxdead);
1040
1041 ui nt 8 public naxLi gFee = 10;
1042 ui nt 8 public nmaxTaxFee = 10;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1147

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "walletFeeInBNB" is
internal. Other possible visibility settings are public and private.

Source File
- Zodiac.sol

Locations

1146

1147 bool wal | et Feel nBNB;

1148 bool wal | et CharityFeel nBNB;
1149 bool wal | et DevFeel nBNB;
1150

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1148

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for
"walletCharityFeelnBNB" is internal. Other possible visibility settings are public and private.

Source File
- Zodiac.sol

Locations

1147 bool wal | et Feel nBNB;

1148 bool wal | et CharityFeel nBNB;
1149 bool wal | et DevFeel nBNB;
1150

1151 addr ess mar ket i ngFeeToken;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1149

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "walletDevFeelnBNB"
is internal. Other possible visibility settings are public and private.

Source File
- Zodiac.sol

Locations

1148 bool wal | et CharityFeel nBNB;
1149 bool wal | et DevFeel nBNB;
1150

1151 addr ess mar ket i ngFeeToken;
1152 address charityFeeToken;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1151

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "marketingFeeToken"
is internal. Other possible visibility settings are public and private.

Source File
- Zodiac.sol

Locations

1150

1151 address narketi ngFeeToken;
1152 address charityFeeToken;
1153 addr ess devFeeToken;

1154

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1152

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "charityFeeToken" is
internal. Other possible visibility settings are public and private.

Source File
- Zodiac.sol

Locations

1151 address nmar ket i ngFeeToken;
1152 address charityFeeToken;
1153 address devFeeToken;

1154

1155 bool i nSwapAndLi qui fy;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1153

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "devFeeToken" is
internal. Other possible visibility settings are public and private.

Source File
- Zodiac.sol

Locations

1152 address charityFeeToken;

1153 address devFeeToken;

1154

1155 bool i nSwapAndLi qui fy;

1156 bool public swapAndLi qui fyEnabl ed = true;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1155

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- Zodiac.sol

Locations

1154

1155 bool i nSwapAndLi qui fy;

1156 bool public swapAndLi qui fyEnabl ed = true;
1157

1158 ui nt 256 public _maxTxAnount;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION

CONTROL.
LINE 1824

low SEVERITY
Using “tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender” unless you really know what you are doing.

Source File
- Zodiac.sol
Locations
1823 gas,
1824 tx.origin
1825);
1826 }

1827 }

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION

CONTROL.
LINE 1920

low SEVERITY

Using “tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender” unless you really know what you are doing.

Source File
- Zodiac.sol
Locations
1919 gas,
1920 tx.origin
1921);
1922 }

1923

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION

CONTROL.
LINE 2429

low SEVERITY

Using “tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender” unless you really know what you are doing.

Source File
- Zodiac.sol
Locations
2428 gas,
2429 tx.origin
2430)
2431 }

2432

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 374

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol
Locations
373 {
374 return map. keys[index];
375 }
376

377 function size(Map storage map) internal view returns (uint256) {

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 406

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

405 ui nt 256 | astlndex = nap. keys.length - 1;
406 address | astKey = map. keys[| ast | ndex] ;
407

408 map. i ndexOf [| ast Key] = i ndex;

409 del ete map. i ndexCOf [key] ;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 411

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol
Locations
410
411 map. keys[i ndex] = | astKey;
412 map. keys. pop() ;
413 }
414 }

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1254

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1253

1254 router = _addrs[O0];

1255 payabl e(_addrs[1]).transfer(nsg. val ue);

1256

1257 I Uni swapV2Rout er 02 _pcsV2Rout er = | Uni swapV2Rout er 02(router);

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1255

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1254 router = _addrs[O0];

1255 payabl e(_addrs[1]).transfer(nsg. val ue);

1256

1257 | Uni swapV2Rout er 02 _pcsV2Rout er = | Uni swapV2Rout er 02(router);
1258 /1 Create a uniswap pair for this new token

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1643

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1642 if (

1643 _rOmed[_excluded[i]] > rSupply ||

1644 _tOmed[_excluded[i]] > tSupply

1645) return (_rTotal, _tTotal);

1646 r Supply = rSupply.sub(_rOmed[_excluded[i]]);

£ SYSFIXED

SWC-110 | OUT OF BOUNDS ARRAY ACCESS

LINE 1644

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol
Locations
1643 _rOmed[_excluded[i]] > rSupply ||
1644 _t Owned[_excluded[i]] > tSupply
1645) return (_rTotal, _tTotal);
1646 rSupply = rSupply.sub(_rOaned[_excluded[i]]);
1647 t Supply = tSupply. sub(_t Owmed[_excluded[i]]);

Zodiac | Security Analysis

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1646

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1645) return (_rTotal, _tTotal);

1646 r Supply = rSupply.sub(_rOmed[_excluded[i]]);

1647 t Supply = t Supply. sub(_t Oamed|[_excluded[i]]);

1648 }

1649 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1647

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1646 r Suppl y
1647 t Suppl y
1648 }

1649 if (rSupply < rTotal.div(_tTotal)) return (_rTotal, _tTotal);
1650 return (rSupply, tSupply);

r Suppl y. sub(_r Omed[_excluded[i]]);
t Suppl y. sub(_t Owned[_excl uded[i]]);

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1953

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1952 address[] nenory path = new address[](2);

1953 pat h{ 0] address(this);

1954 pat h[1] pcsV2Rout er . WETH() ;

1955

1956 _approve(address(this), address(pcsV2Router), tokenAnount);

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1954

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

address(this);
pcsV2Rout er . WETH() ;

1953 pat h[0]
1954 pat h[1]
1955

1956 _approve(address(this), address(pcsV2Router), tokenAmount);
1957

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1971

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1970 address[] nenory path = new address[](2);
1971 pat h{ 0] pcsV2Rout er . WETH() ;

1972 pat h[1] address(this);

1973

1974 /1 make the swap

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1972

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1971 pat h[0] = pcsV2Rout er. VETH() ;

1972 pat h[1] = address(this);

1973

1974 /1 make the swap

1975 pcsV2Rout er . swapExact ETHFor TokensSupport i ngFeeOnTr ansf er Tokens{

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1993

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1992 address[] nenory path = new address[](3);
1993 pat h{ 0] address(this);

1994 pat h[1] pcsV2Rout er . WETH() ;

1995 pat h[2] f eeToken;

1996

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1994

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1993 pat h[0]
1994 pat h[1]
1995 pat h[2]
1996

1997 _approve(address(this), address(pcsV2Router), tokenAnount);

address(this);
pcsV2Rout er . WETH() ;
f eeToken;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1995

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

1994 pat h[1]
1995 pat h[2]
1996

1997 _approve(address(this), address(pcsV2Router), tokenAmount);
1998

pcsV2Rout er . WETH() ;
f eeToken;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2246

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol

Locations

2245

2246 address account = tokenHol der sivap. keys[_| ast Processedl ndex] ;
2247

2248 i f (canAut oC ai m(| ast C ai nli mes[account])) {

2249 i f (processAccount (payabl e(account), true)) {

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2401

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File

- Zodiac.sol

Locations
2400 for (uint256 i = 0; i < _excluded.length; i++) {
2401 if (_excluded[i] == account) {
2402 _excluded[i] = _excluded[_excluded.length - 1];

2403 _t Omed[account] = 0;
2404 i sExcluded[account] = fal se;

@S‘I"‘SH}I{ED Zodiac | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2402

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zodiac.sol
Locations
2401 if (_excluded[i] == account) {
2402 _excluded[i] = _excluded[_excluded.length - 1];
2403 _t Omed[account] = 0;
2404 _i sExcl uded[account] = fal se;
2405 _excl uded. pop();

@S‘I"‘SH}I{ED Zodiac | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@S‘I"‘SH}I{ED Zodiac | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

