
Chirpley Token

Smart Contract
Audit Report

20 Jul 2022

Chirpley Token | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Chirpley Token | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Chirpley Token CHRP Binance Smart Chain

| Addresses

Contract address 0xed00fc7d48b57b81fe65d1ce71c0985e4cf442cb

Contract deployer address 0x67A41a5F64B102D2EB680cc7f336e3e425cCB6Df

| Project Website

https://chirpley.ai/

| Codebase

https://bscscan.com/address/0xed00fc7d48b57b81fe65d1ce71c0985e4cf442cb#code

https://chirpley.ai/
https://bscscan.com/address/0xed00fc7d48b57b81fe65d1ce71c0985e4cf442cb#code

Chirpley Token | Security Analysis

SUMMARY

Chirpley is a cutting-edge influencer marketing platform for small influencers. The platform has been
developed to create a decentralized organization that operates entirely in the interest of its end users: the
small influencer and the marketer. Performs virtual mapping using Artificial intelligence, Machine Learning, and
Bigdata technologies. The critical element making a difference is that Chirpley hands marketers the
opportunity to set up a campaign with thousands of small influencers simultaneously in minutes—cost
Effective & Time Effective. Chirpley offers the solution to make campaigns more streamlined and accurate at
highly economical, cost-efficient prices. A market price is formed based on the data from the linked social
media channels of the influencers.

| Contract Summary

Documentation Quality

Chirpley Token provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Chirpley Token with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 32, 59, 144,
229, 259, 644 and 683.
SWC-107 | It is recommended to use a reentrancy lock, reentrancy weaknesses detected on lines 490,
493 and 495.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 716.

Chirpley Token | Security Analysis

CONCLUSION

We have audited the Chirpley Token project released on July 2022 to discover issues and identify potential
security vulnerabilities in Chirpley Token Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the Chirpley Token smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are floating pragma
is set, read or write of persistent state following the external call, requirement violation, and out-of-bounds
array access which the index access expression can cause an exception in case of using an invalid array index
value. The current pragma Solidity directive is ""^0.8.0"". Specifying a fixed compiler version is recommended
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. Read of persistent state following the external call, contract account
state is accessed after an external call. To prevent reentrancy issues, consider accessing the form only before
the call, especially if the call is untrusted. Alternatively, a reentrancy lock can avoid untrusted callees from re-
entering the contract in an intermediate state. A requirement was violated in a nested call, and the call was
reverted. Ensure valid inputs are provided to the nested call (for instance, via passed arguments).

Chirpley Token | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

ISSUE
FOUND

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Chirpley Token | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Chirpley Token | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Chirpley Token | Security Analysis

SMART CONTRACT ANALYSIS

Started Tuesday Jul 19 2022 01:34:04 GMT+0000 (Coordinated Universal Time)

Finished Wednesday Jul 20 2022 03:15:21 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File ChirpleyToken.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 WRITE TO PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-123 REQUIREMENT VIOLATION. low acknowledged

Chirpley Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 32

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ChirpleyToken.sol

Locations

31

32 pragma solidity ^0.8.0;

33

34 /**

35 * @dev Provides information about the current execution context, including the

36

Chirpley Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 59

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ChirpleyToken.sol

Locations

58

59 pragma solidity ^0.8.0;

60

61

62 /**

63

Chirpley Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 144

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ChirpleyToken.sol

Locations

143

144 pragma solidity ^0.8.0;

145

146 /**

147 * @dev Interface of the ERC20 standard as defined in the EIP.

148

Chirpley Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 229

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ChirpleyToken.sol

Locations

228

229 pragma solidity ^0.8.0;

230

231

232 /**

233

Chirpley Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 259

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ChirpleyToken.sol

Locations

258

259 pragma solidity ^0.8.0;

260

261

262

263

Chirpley Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 644

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ChirpleyToken.sol

Locations

643

644 pragma solidity ^0.8.0;

645

646

647

648

Chirpley Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 683

low SEVERITY
The current pragma Solidity directive is ""^0.8.13"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ChirpleyToken.sol

Locations

682

683 pragma solidity ^0.8.13;

684

685

686

687

Chirpley Token | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 490

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- ChirpleyToken.sol

Locations

489

490 uint256 fromBalance = _balances[from];

491 require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");

492 unchecked {

493 _balances[from] = fromBalance - amount;

494

Chirpley Token | Security Analysis

SWC-107 | WRITE TO PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 493

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- ChirpleyToken.sol

Locations

492 unchecked {

493 _balances[from] = fromBalance - amount;

494 }

495 _balances[to] += amount;

496

497

Chirpley Token | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 495

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- ChirpleyToken.sol

Locations

494 }

495 _balances[to] += amount;

496

497 emit Transfer(from, to, amount);

498

499

Chirpley Token | Security Analysis

SWC-123 | REQUIREMENT VIOLATION.
LINE 716

low SEVERITY
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments).

Source File
- ChirpleyToken.sol

Locations

715 if (!antisnipeDisable && address(antisnipe) != address(0))

716 antisnipe.assureCanTransfer(msg.sender, from, to, amount);

717 }

718

719 function setAntisnipeDisable() external onlyOwner {

720

Chirpley Token | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Chirpley Token | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

