
BunnyVerse

Smart Contract
Audit Report

21 Dec 2022

BunnyVerse | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

BunnyVerse | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

BunnyVerse BNV Ethereum

| Addresses

Contract address 0x072987D5B36aD8d45552aEd98879a7101cCdd749

Contract deployer address 0x1578265d37E4abDAeBA400674ad4f720439F7c79

| Project Website

https://bunny-verse.com/

| Codebase

https://etherscan.io/address/0x072987D5B36aD8d45552aEd98879a7101cCdd749#code

https://bunny-verse.com/
https://etherscan.io/address/0x072987D5B36aD8d45552aEd98879a7101cCdd749#code

BunnyVerse | Security Analysis

SUMMARY

BunnyVerse (BNV) is more than just a meme. It is an ERC 20 token with the actual utility connected to it. The
BunnyVerse team has the ambition to create its ecosystem. Our ecosystem will work hard to deliver the best
products within the crypto, web3 and metaverse space. The BunnyVerse will be a platform and launchpad for
newly developed and released games targeting sophisticated gaming audiences.

| Contract Summary

Documentation Quality

BunnyVerse provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by BunnyVerse with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 682.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 50, 66, 76, 77, 92, 108, 619, 619, 620, 620, 668, 719, 719, 720, 720, 721, 721, 874, 903, 932, 963, 978,
980, 1024, 1044, 1051, 1079, 1087, 1104, 1104, 1110, 1110, 1115, 1140, 1144, 1144, 1144, 1155, 1378,
1392, 1392, 1392, 1393, 1393, 1393, 1395, 1395, 1395, 1396, 1396, 1396, 1406, 1414, 1451, 1451, 1461,
1461 and 980.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 875, 933, 934, 979, 980, 980, 1171, 1172, 1380, 1381, 1383, 1384,
1483 and 1484.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 1036 and
1037.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 865, 1024,
1036 and 1037.

BunnyVerse | Security Analysis

CONCLUSION

We have audited the BunnyVerse project released on December 2022 to discover issues and identify potential
security vulnerabilities in BunnyVerse Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the BunnyVerse smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a state variable visibility is not set, weak sources of randomness, tx.origin as a part of
authorization control and out of bounds array access which the index access expression can cause an
exception in case of the use of an invalid array index value. We recommend avoiding using " "tx.origin". The
tx.origin environment variable has been found to influence a control flow decision. Note that using "tx.origin" as
a security control might cause a situation where a user inadvertently authorizes a smart contract to perform an
action on their behalf. It is recommended to use "msg.sender" instead.

BunnyVerse | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

BunnyVerse | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

BunnyVerse | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

BunnyVerse | Security Analysis

SMART CONTRACT ANALYSIS

Started Tuesday Dec 20 2022 19:41:40 GMT+0000 (Coordinated Universal Time)

Finished Wednesday Dec 21 2022 02:00:16 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File BUNNYVERSE.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 50

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

49 function add(uint256 a, uint256 b) internal pure returns (uint256) {

50 uint256 c = a + b;

51 require(c >= a, "SafeMath: addition overflow");

52

53 return c;

54

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 66

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

65 require(b <= a, errorMessage);

66 uint256 c = a - b;

67

68 return c;

69 }

70

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 76

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

75

76 uint256 c = a * b;

77 require(c / a == b, "SafeMath: multiplication overflow");

78

79 return c;

80

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 77

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

76 uint256 c = a * b;

77 require(c / a == b, "SafeMath: multiplication overflow");

78

79 return c;

80 }

81

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 92

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

91 require(b > 0, errorMessage);

92 uint256 c = a / b;

93 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

94

95 return c;

96

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 108

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

107 require(b != 0, errorMessage);

108 return a % b;

109 }

110 }

111

112

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 619

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

618 uint256 private constant MAX = ~uint256(0);

619 uint256 private constant _tTotal = 1 * 1e12 * 1e18;

620 uint256 private _rTotal = (MAX - (MAX % _tTotal));

621 uint256 private _tFeeTotal;

622

623

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 619

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

618 uint256 private constant MAX = ~uint256(0);

619 uint256 private constant _tTotal = 1 * 1e12 * 1e18;

620 uint256 private _rTotal = (MAX - (MAX % _tTotal));

621 uint256 private _tFeeTotal;

622

623

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 620

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

619 uint256 private constant _tTotal = 1 * 1e12 * 1e18;

620 uint256 private _rTotal = (MAX - (MAX % _tTotal));

621 uint256 private _tFeeTotal;

622

623 string private constant _name = "BunnyVerse";

624

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 620

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

619 uint256 private constant _tTotal = 1 * 1e12 * 1e18;

620 uint256 private _rTotal = (MAX - (MAX % _tTotal));

621 uint256 private _tFeeTotal;

622

623 string private constant _name = "BunnyVerse";

624

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 668

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

667 bool private gasLimitActive = true;

668 uint256 private gasPriceLimit = 602 * 1 gwei;

669

670 // store addresses that a automatic market maker pairs. Any transfer *to* these

addresses

671 // could be subject to a maximum transfer amount

672

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 719

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

718

719 maxTransactionAmount = _tTotal * 50 / 10000; // 0.5% max txn

720 minimumTokensBeforeSwap = _tTotal * 5 / 10000; // 0.05%

721 maxWallet = _tTotal * 100 / 10000; // 1%

722

723

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 719

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

718

719 maxTransactionAmount = _tTotal * 50 / 10000; // 0.5% max txn

720 minimumTokensBeforeSwap = _tTotal * 5 / 10000; // 0.05%

721 maxWallet = _tTotal * 100 / 10000; // 1%

722

723

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 720

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

719 maxTransactionAmount = _tTotal * 50 / 10000; // 0.5% max txn

720 minimumTokensBeforeSwap = _tTotal * 5 / 10000; // 0.05%

721 maxWallet = _tTotal * 100 / 10000; // 1%

722

723 _rOwned[newOwner] = _rTotal;

724

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 720

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

719 maxTransactionAmount = _tTotal * 50 / 10000; // 0.5% max txn

720 minimumTokensBeforeSwap = _tTotal * 5 / 10000; // 0.05%

721 maxWallet = _tTotal * 100 / 10000; // 1%

722

723 _rOwned[newOwner] = _rTotal;

724

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 721

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

720 minimumTokensBeforeSwap = _tTotal * 5 / 10000; // 0.05%

721 maxWallet = _tTotal * 100 / 10000; // 1%

722

723 _rOwned[newOwner] = _rTotal;

724

725

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 721

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

720 minimumTokensBeforeSwap = _tTotal * 5 / 10000; // 0.05%

721 maxWallet = _tTotal * 100 / 10000; // 1%

722

723 _rOwned[newOwner] = _rTotal;

724

725

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 874

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

873 function manageSnipers(address[] calldata addresses, bool status) public onlyOwner

{

874 for (uint256 i; i < addresses.length; ++i) {

875 _isSniper[addresses[i]] = status;

876 }

877 }

878

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 903

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

902 require(gas >= 300);

903 gasPriceLimit = gas * 1 gwei;

904 }

905

906 // disable Transfer delay

907

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 932

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

931 buyOrSellSwitch = TRANSFER;

932 for(uint256 i = 0; i < airdropWallets.length; i++){

933 address wallet = airdropWallets[i];

934 uint256 airdropAmount = amount[i];

935 _tokenTransfer(msg.sender, wallet, airdropAmount);

936

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 963

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

962 require(!_isExcluded[account], "Account is already excluded");

963 require(_excluded.length + 1 <= 50, "Cannot exclude more than 50 accounts. Include

a previously excluded address.");

964 if (_rOwned[account] > 0) {

965 _tOwned[account] = tokenFromReflection(_rOwned[account]);

966 }

967

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 978

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

977 require(_isExcluded[account], "Account is not excluded");

978 for (uint256 i = 0; i < _excluded.length; i++) {

979 if (_excluded[i] == account) {

980 _excluded[i] = _excluded[_excluded.length - 1];

981 _tOwned[account] = 0;

982

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 980

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

979 if (_excluded[i] == account) {

980 _excluded[i] = _excluded[_excluded.length - 1];

981 _tOwned[account] = 0;

982 _isExcluded[account] = false;

983 _excluded.pop();

984

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1024

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1023){

1024 if(tradingActiveBlock > 0 && (tradingActiveBlock + deadBlocks) > block.number){

1025 _isSniper[to]=true;

1026 }

1027

1028

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1044

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1043 require(amount <= maxTransactionAmount, "Buy transfer amount exceeds the

maxTransactionAmount.");

1044 require(amount + balanceOf(to) <= maxWallet, "Cannot exceed max wallet");

1045 }

1046 //when sell

1047 else if (automatedMarketMakerPairs[to] && !_isExcludedMaxTransactionAmount[from])

{

1048

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1051

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1050 else if (!_isExcludedMaxTransactionAmount[to]){

1051 require(amount + balanceOf(to) <= maxWallet, "Cannot exceed max wallet");

1052 }

1053 }

1054 }

1055

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1079

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1078 _taxFee = _buyTaxFee;

1079 _liquidityFee = _buyLiquidityFee + _buyMarketingFee;

1080 if(_liquidityFee > 0){

1081 buyOrSellSwitch = BUY;

1082 }

1083

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1087

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1086 _taxFee = _sellTaxFee;

1087 _liquidityFee = _sellLiquidityFee + _sellMarketingFee;

1088 if(_liquidityFee > 0){

1089 buyOrSellSwitch = SELL;

1090 }

1091

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1104

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1103 require(percent <= 50, "Swap amount cannot be higher than 0.5% total supply.");

1104 minimumTokensBeforeSwap = _tTotal * percent / 10000;

1105 return true;

1106 }

1107

1108

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1104

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1103 require(percent <= 50, "Swap amount cannot be higher than 0.5% total supply.");

1104 minimumTokensBeforeSwap = _tTotal * percent / 10000;

1105 return true;

1106 }

1107

1108

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1110

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1109 require(percent >= 10, "Cannot set maxTransactionAmount lower than 0.1%");

1110 maxTransactionAmount = _tTotal * percent / 10000;

1111 }

1112

1113 // percent 25 for .25%

1114

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1110

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1109 require(percent >= 10, "Cannot set maxTransactionAmount lower than 0.1%");

1110 maxTransactionAmount = _tTotal * percent / 10000;

1111 }

1112

1113 // percent 25 for .25%

1114

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1115

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1114 function manualBurnLiquidityPairTokens(uint256 percent) external onlyOwner returns

(bool){

1115 require(block.timestamp > lastManualLpBurnTime + manualBurnFrequency , "Must wait

for cooldown to finish");

1116 require(percent <= 1000, "May not nuke more than 10% of tokens in LP");

1117 lastManualLpBurnTime = block.timestamp;

1118

1119

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1140

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1139 bool success;

1140 uint256 totalTokensToSwap = _liquidityTokensToSwap + _marketingTokensToSwap;

1141 if(totalTokensToSwap == 0 || contractBalance == 0) {return;}

1142

1143 // Halve the amount of liquidity tokens

1144

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1144

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1143 // Halve the amount of liquidity tokens

1144 uint256 tokensForLiquidity = (contractBalance * _liquidityTokensToSwap /

totalTokensToSwap) / 2;

1145 uint256 amountToSwapForBNB = contractBalance.sub(tokensForLiquidity);

1146

1147 uint256 initialBNBBalance = address(this).balance;

1148

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1144

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1143 // Halve the amount of liquidity tokens

1144 uint256 tokensForLiquidity = (contractBalance * _liquidityTokensToSwap /

totalTokensToSwap) / 2;

1145 uint256 amountToSwapForBNB = contractBalance.sub(tokensForLiquidity);

1146

1147 uint256 initialBNBBalance = address(this).balance;

1148

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1144

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1143 // Halve the amount of liquidity tokens

1144 uint256 tokensForLiquidity = (contractBalance * _liquidityTokensToSwap /

totalTokensToSwap) / 2;

1145 uint256 amountToSwapForBNB = contractBalance.sub(tokensForLiquidity);

1146

1147 uint256 initialBNBBalance = address(this).balance;

1148

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1155

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1154

1155 uint256 bnbForLiquidity = bnbBalance - bnbForMarketing;

1156

1157 _liquidityTokensToSwap = 0;

1158 _marketingTokensToSwap = 0;

1159

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1378

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1377 uint256 tSupply = _tTotal;

1378 for (uint256 i = 0; i < _excluded.length; i++) {

1379 if (

1380 _rOwned[_excluded[i]] > rSupply ||

1381 _tOwned[_excluded[i]] > tSupply

1382

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1392

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1391 if(buyOrSellSwitch == BUY){

1392 _liquidityTokensToSwap += tLiquidity * _buyLiquidityFee / _liquidityFee;

1393 _marketingTokensToSwap += tLiquidity * _buyMarketingFee / _liquidityFee;

1394 } else if(buyOrSellSwitch == SELL){

1395 _liquidityTokensToSwap += tLiquidity * _sellLiquidityFee / _liquidityFee;

1396

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1392

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1391 if(buyOrSellSwitch == BUY){

1392 _liquidityTokensToSwap += tLiquidity * _buyLiquidityFee / _liquidityFee;

1393 _marketingTokensToSwap += tLiquidity * _buyMarketingFee / _liquidityFee;

1394 } else if(buyOrSellSwitch == SELL){

1395 _liquidityTokensToSwap += tLiquidity * _sellLiquidityFee / _liquidityFee;

1396

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1392

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1391 if(buyOrSellSwitch == BUY){

1392 _liquidityTokensToSwap += tLiquidity * _buyLiquidityFee / _liquidityFee;

1393 _marketingTokensToSwap += tLiquidity * _buyMarketingFee / _liquidityFee;

1394 } else if(buyOrSellSwitch == SELL){

1395 _liquidityTokensToSwap += tLiquidity * _sellLiquidityFee / _liquidityFee;

1396

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1393

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1392 _liquidityTokensToSwap += tLiquidity * _buyLiquidityFee / _liquidityFee;

1393 _marketingTokensToSwap += tLiquidity * _buyMarketingFee / _liquidityFee;

1394 } else if(buyOrSellSwitch == SELL){

1395 _liquidityTokensToSwap += tLiquidity * _sellLiquidityFee / _liquidityFee;

1396 _marketingTokensToSwap += tLiquidity * _sellMarketingFee / _liquidityFee;

1397

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1393

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1392 _liquidityTokensToSwap += tLiquidity * _buyLiquidityFee / _liquidityFee;

1393 _marketingTokensToSwap += tLiquidity * _buyMarketingFee / _liquidityFee;

1394 } else if(buyOrSellSwitch == SELL){

1395 _liquidityTokensToSwap += tLiquidity * _sellLiquidityFee / _liquidityFee;

1396 _marketingTokensToSwap += tLiquidity * _sellMarketingFee / _liquidityFee;

1397

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1393

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1392 _liquidityTokensToSwap += tLiquidity * _buyLiquidityFee / _liquidityFee;

1393 _marketingTokensToSwap += tLiquidity * _buyMarketingFee / _liquidityFee;

1394 } else if(buyOrSellSwitch == SELL){

1395 _liquidityTokensToSwap += tLiquidity * _sellLiquidityFee / _liquidityFee;

1396 _marketingTokensToSwap += tLiquidity * _sellMarketingFee / _liquidityFee;

1397

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1395

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1394 } else if(buyOrSellSwitch == SELL){

1395 _liquidityTokensToSwap += tLiquidity * _sellLiquidityFee / _liquidityFee;

1396 _marketingTokensToSwap += tLiquidity * _sellMarketingFee / _liquidityFee;

1397 }

1398 uint256 currentRate = _getRate();

1399

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1395

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1394 } else if(buyOrSellSwitch == SELL){

1395 _liquidityTokensToSwap += tLiquidity * _sellLiquidityFee / _liquidityFee;

1396 _marketingTokensToSwap += tLiquidity * _sellMarketingFee / _liquidityFee;

1397 }

1398 uint256 currentRate = _getRate();

1399

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1395

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1394 } else if(buyOrSellSwitch == SELL){

1395 _liquidityTokensToSwap += tLiquidity * _sellLiquidityFee / _liquidityFee;

1396 _marketingTokensToSwap += tLiquidity * _sellMarketingFee / _liquidityFee;

1397 }

1398 uint256 currentRate = _getRate();

1399

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1396

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1395 _liquidityTokensToSwap += tLiquidity * _sellLiquidityFee / _liquidityFee;

1396 _marketingTokensToSwap += tLiquidity * _sellMarketingFee / _liquidityFee;

1397 }

1398 uint256 currentRate = _getRate();

1399 uint256 rLiquidity = tLiquidity.mul(currentRate);

1400

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1396

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1395 _liquidityTokensToSwap += tLiquidity * _sellLiquidityFee / _liquidityFee;

1396 _marketingTokensToSwap += tLiquidity * _sellMarketingFee / _liquidityFee;

1397 }

1398 uint256 currentRate = _getRate();

1399 uint256 rLiquidity = tLiquidity.mul(currentRate);

1400

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1396

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1395 _liquidityTokensToSwap += tLiquidity * _sellLiquidityFee / _liquidityFee;

1396 _marketingTokensToSwap += tLiquidity * _sellMarketingFee / _liquidityFee;

1397 }

1398 uint256 currentRate = _getRate();

1399 uint256 rLiquidity = tLiquidity.mul(currentRate);

1400

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1406

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1405 function calculateTaxFee(uint256 _amount) private view returns (uint256) {

1406 return _amount.mul(_taxFee).div(10**2);

1407 }

1408

1409 function calculateLiquidityFee(uint256 _amount)

1410

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1414

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1413 {

1414 return _amount.mul(_liquidityFee).div(10**2);

1415 }

1416

1417 function removeAllFee() private {

1418

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1451

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1450 _buyMarketingFee = buyMarketingFee;

1451 require(_buyTaxFee + _buyLiquidityFee + _buyMarketingFee <= 15, "Must keep taxes

below 15%");

1452 }

1453

1454 function setSellFee(uint256 sellTaxFee, uint256 sellLiquidityFee, uint256

sellMarketingFee)

1455

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1451

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1450 _buyMarketingFee = buyMarketingFee;

1451 require(_buyTaxFee + _buyLiquidityFee + _buyMarketingFee <= 15, "Must keep taxes

below 15%");

1452 }

1453

1454 function setSellFee(uint256 sellTaxFee, uint256 sellLiquidityFee, uint256

sellMarketingFee)

1455

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1461

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1460 _sellMarketingFee = sellMarketingFee;

1461 require(_sellTaxFee + _sellLiquidityFee + _sellMarketingFee <= 25, "Must keep

taxes below 25%");

1462 }

1463

1464 function setMarketingAddress(address _marketingAddress) external onlyOwner {

1465

BunnyVerse | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1461

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

1460 _sellMarketingFee = sellMarketingFee;

1461 require(_sellTaxFee + _sellLiquidityFee + _sellMarketingFee <= 25, "Must keep

taxes below 25%");

1462 }

1463

1464 function setMarketingAddress(address _marketingAddress) external onlyOwner {

1465

BunnyVerse | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 980

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BUNNYVERSE.sol

Locations

979 if (_excluded[i] == account) {

980 _excluded[i] = _excluded[_excluded.length - 1];

981 _tOwned[account] = 0;

982 _isExcluded[account] = false;

983 _excluded.pop();

984

BunnyVerse | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 682

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- BUNNYVERSE.sol

Locations

681

682 bool inSwapAndLiquify;

683 bool public swapAndLiquifyEnabled = false;

684

685 event RewardLiquidityProviders(uint256 tokenAmount);

686

BunnyVerse | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1036

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using
"tx.origin" as a security control might cause a situation where a user inadvertently authorizes a smart contract
to perform an action on their behalf. It is recommended to use "msg.sender" instead.

Source File
- BUNNYVERSE.sol

Locations

1035 if (to != owner() && to != address(uniswapV2Router) && to !=

address(uniswapV2Pair)){

1036 require(_holderLastTransferTimestamp[tx.origin] < block.number, "_transfer::

Transfer Delay enabled. Only one purchase per block allowed.");

1037 _holderLastTransferTimestamp[tx.origin] = block.number;

1038 }

1039 }

1040

BunnyVerse | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1037

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- BUNNYVERSE.sol

Locations

1036 require(_holderLastTransferTimestamp[tx.origin] < block.number, "_transfer::

Transfer Delay enabled. Only one purchase per block allowed.");

1037 _holderLastTransferTimestamp[tx.origin] = block.number;

1038 }

1039 }

1040

1041

BunnyVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 875

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BUNNYVERSE.sol

Locations

874 for (uint256 i; i < addresses.length; ++i) {

875 _isSniper[addresses[i]] = status;

876 }

877 }

878

879

BunnyVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 933

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BUNNYVERSE.sol

Locations

932 for(uint256 i = 0; i < airdropWallets.length; i++){

933 address wallet = airdropWallets[i];

934 uint256 airdropAmount = amount[i];

935 _tokenTransfer(msg.sender, wallet, airdropAmount);

936 }

937

BunnyVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 934

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BUNNYVERSE.sol

Locations

933 address wallet = airdropWallets[i];

934 uint256 airdropAmount = amount[i];

935 _tokenTransfer(msg.sender, wallet, airdropAmount);

936 }

937 restoreAllFee();

938

BunnyVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 979

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BUNNYVERSE.sol

Locations

978 for (uint256 i = 0; i < _excluded.length; i++) {

979 if (_excluded[i] == account) {

980 _excluded[i] = _excluded[_excluded.length - 1];

981 _tOwned[account] = 0;

982 _isExcluded[account] = false;

983

BunnyVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 980

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BUNNYVERSE.sol

Locations

979 if (_excluded[i] == account) {

980 _excluded[i] = _excluded[_excluded.length - 1];

981 _tOwned[account] = 0;

982 _isExcluded[account] = false;

983 _excluded.pop();

984

BunnyVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 980

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BUNNYVERSE.sol

Locations

979 if (_excluded[i] == account) {

980 _excluded[i] = _excluded[_excluded.length - 1];

981 _tOwned[account] = 0;

982 _isExcluded[account] = false;

983 _excluded.pop();

984

BunnyVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1171

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BUNNYVERSE.sol

Locations

1170 address[] memory path = new address[](2);

1171 path[0] = address(this);

1172 path[1] = uniswapV2Router.WETH();

1173 _approve(address(this), address(uniswapV2Router), tokenAmount);

1174 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

1175

BunnyVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1172

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BUNNYVERSE.sol

Locations

1171 path[0] = address(this);

1172 path[1] = uniswapV2Router.WETH();

1173 _approve(address(this), address(uniswapV2Router), tokenAmount);

1174 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

1175 tokenAmount,

1176

BunnyVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1380

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BUNNYVERSE.sol

Locations

1379 if (

1380 _rOwned[_excluded[i]] > rSupply ||

1381 _tOwned[_excluded[i]] > tSupply

1382) return (_rTotal, _tTotal);

1383 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1384

BunnyVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1381

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BUNNYVERSE.sol

Locations

1380 _rOwned[_excluded[i]] > rSupply ||

1381 _tOwned[_excluded[i]] > tSupply

1382) return (_rTotal, _tTotal);

1383 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1384 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1385

BunnyVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1383

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BUNNYVERSE.sol

Locations

1382) return (_rTotal, _tTotal);

1383 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1384 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1385 }

1386 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1387

BunnyVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1384

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BUNNYVERSE.sol

Locations

1383 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1384 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1385 }

1386 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1387 return (rSupply, tSupply);

1388

BunnyVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1483

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BUNNYVERSE.sol

Locations

1482 address[] memory path = new address[](2);

1483 path[0] = uniswapV2Router.WETH();

1484 path[1] = address(this);

1485

1486 // make the swap

1487

BunnyVerse | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1484

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BUNNYVERSE.sol

Locations

1483 path[0] = uniswapV2Router.WETH();

1484 path[1] = address(this);

1485

1486 // make the swap

1487 uniswapV2Router.swapExactETHForTokensSupportingFeeOnTransferTokens{value:

bnbAmountInWei}(

1488

BunnyVerse | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 865

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- BUNNYVERSE.sol

Locations

864 swapAndLiquifyEnabled = true;

865 tradingActiveBlock = block.number;

866 deadBlocks = _deadBlocks;

867 }

868

869

BunnyVerse | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1024

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- BUNNYVERSE.sol

Locations

1023){

1024 if(tradingActiveBlock > 0 && (tradingActiveBlock + deadBlocks) > block.number){

1025 _isSniper[to]=true;

1026 }

1027

1028

BunnyVerse | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1036

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- BUNNYVERSE.sol

Locations

1035 if (to != owner() && to != address(uniswapV2Router) && to !=

address(uniswapV2Pair)){

1036 require(_holderLastTransferTimestamp[tx.origin] < block.number, "_transfer::

Transfer Delay enabled. Only one purchase per block allowed.");

1037 _holderLastTransferTimestamp[tx.origin] = block.number;

1038 }

1039 }

1040

BunnyVerse | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1037

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- BUNNYVERSE.sol

Locations

1036 require(_holderLastTransferTimestamp[tx.origin] < block.number, "_transfer::

Transfer Delay enabled. Only one purchase per block allowed.");

1037 _holderLastTransferTimestamp[tx.origin] = block.number;

1038 }

1039 }

1040

1041

BunnyVerse | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

BunnyVerse | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

