

ZionTopia Smart Contract Audit Report

10 Mar 2022

TABLE OF CONTENTS

Audited Details

- Audited Project
- Blockchain
- Addresses
- Project Website
- Codebase

Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

Conclusion

Audit Results

Smart Contract Analysis

- Detected Vulnerabilities

Disclaimer

About Us

AUDITED DETAILS

Audited Project

Project name	Token ticker	Blockchain	
ZionTopia	ZION	Binance Smart Chain	

Addresses

Contract address	0xe0399378f7a92a39da849eb64cddde2940e234bb	
Contract deployer address	0x8725269469559E0d0BF302Bd7cB9716d243A74DF	

Project Website

https://www.ziontopia.com/

Codebase

https://bscscan.com/address/0xe0399378f7a92a39da849eb64cddde2940e234bb#code

SUMMARY

ZionTopia will act as a tokenized decentralized VR Crypto Underground world powered by the BNB CHAIN The ZionTopia Metaverse will work as a real estate and present shops that can be purchased, sold, or governed by the ZION token holders. The native token of ZionTopia is \$ZION. People living in this underground city will be known as Ziontopians ZionTopia is an underground city made up ofof three blocks of 21 levels ZionTopia act as a central hub and welcome all levels of crypto experience. Also, users can access crypto information and immersive content at ZionTopia ZionTopia's large user base, allowing monetization through sponsorship and advertising and providing an opportunity to share in revenue generation via an NFT mechanism. By using the the most powerful and advanced 3D Game Engine, ZionTopia will present stunning visualizations and excellent user experience to all users. ZionTopians can learn the crypto basics, get revenue from the shops or advertisements, play games, socialize, and do much more.

Contract Summary

Documentation Quality

ZionTopia provides a very good documentation with standard of solidity base code.

• The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

• Standard solidity basecode and rules are already followed by ZionTopia with the discovery of several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

Audit Findings Summary

- SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 122 and 126.
- SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 5.
- SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new REVERT opcode in the EVM on lines 31.

CONCLUSION

We have audited the ZionTopia project released on March 2022 to discover issues and identify potential security vulnerabilities in ZionTopia Project. This process is used to find technical issues and security loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the ZionTopia smart contract code do not pose a considerable risk. The writing of the contract is close to the standard of writing contracts in general. The low-risk issues found are arithmetic operation issues, a floating pragma is set, a state variable visibility is not set, and an assertion violation was triggered. The current pragma Solidity directive is "^0.4.24"". Specifying a fixed compiler version is recommended to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code. It is best practice to set the visibility settings are public and private. An assertion violation was triggered, possibly to cause an assertion violation. Solidity asserts () statements should only be used to check invariants. Review the transaction trace generated for this issue and either make sure your program logic is correct or use require() instead of assert() if your goal is to constrain user inputs or enforce preconditions. Remember to validate input from callers (via passed arguments) and callees (for example, via return values).

AUDIT RESULT

Article	Category	Description	Result	
Default Visibility	SWC-100 SWC-108	Functions and state variables visibility should be set explicitly. Visibility levels should be specified consciously.	ISSUE	
Integer Overflow and Underflow	SWC-101	If unchecked math is used, all math operations should be safe from overflows and underflows.	PASS	
Outdated Compiler Version	SWC-102	It is recommended to use a recent version of the Solidity compiler.	PASS	
Floating Pragma	SWC-103	Contracts should be deployed with the same compiler version and flags that they have been tested thoroughly.		
Unchecked Call Return Value	SWC-104	The return value of a message call should be checked.		
Unprotected Ether Withdrawal	SWC-105	Due to missing or insufficient access controls, malicious parties can withdraw from the contract.		
SELFDESTRUCT Instruction	SWC-106	The contract should not be self-destructible while it has funds belonging to users.		
Reentrancy	SWC-107	Check effect interaction pattern should be followed if the code performs recursive call.		
Uninitialized Storage Pointer	SWC-109	Uninitialized local storage variables can point to unexpected storage locations in the contract.		
Assert Violation	SWC-110 SWC-123	Properly functioning code should never reach aISSUEfailing assert statement.FOUNE		
Deprecated Solidity Functions	SWC-111	Deprecated built-in functions should never be used. PASS		
Delegate call to Untrusted Callee	SWC-112	Delegatecalls should only be allowed to trusted addresses.		

DoS (Denial of Service)	SWC-113 SWC-128	Execution of the code should never be blocked by a specific contract state unless required.		
Race Conditions	SWC-114	Race Conditions and Transactions Order Dependency should not be possible.	ncy PASS	
Authorization through tx.origin	SWC-115	tx.origin should not be used for authorization.	PASS	
Block values as a proxy for time	SWC-116	Block numbers should not be used for time calculations.	ns. PASS	
Signature Unique ID	SWC-117 SWC-121 SWC-122	Signed messages should always have a unique id. A transaction hash should not be used as a unique id.	PASS	
Incorrect Constructor Name	SWC-118	Constructors are special functions that are called only once during the contract creation.	only once PASS	
Shadowing State Variable	SWC-119	State variables should not be shadowed.		
Weak Sources of Randomness	SWC-120	Random values should never be generated from Chain Attributes or be predictable.		
Write to Arbitrary Storage Location	SWC-124	The contract is responsible for ensuring that only authorized user or contract accounts may write to sensitive storage locations.		
Incorrect Inheritance Order	SWC-125	When inheriting multiple contracts, especially if they have identical functions, a developer should carefully specify inheritance in the correct order. The rule of thumb is to inherit contracts from more /general/ to more /specific/.		
Insufficient Gas Griefing	SWC-126	Insufficient gas griefing attacks can be performed on contracts which accept data and use it in a sub-call on another contract.		
Arbitrary Jump Function	SWC-127	As Solidity doesnt support pointer arithmetics, it is impossible to change such variable to an arbitrary value.	PASS	

Typographical Error	SWC-129	A typographical error can occur for example when the intent of a defined operation is to sum a number to a variable.		
Override control character	SWC-130	Malicious actors can use the Right-To-Left-Override unicode character to force RTL text rendering and confuse users as to the real intent of a contract.	PASS	
Unused variables	SWC-131 SWC-135	Unused variables are allowed in Solidity and they do not pose a direct security issue.	PASS	
Unexpected Ether balance	SWC-132	Contracts can behave erroneously when they strictly assume a specific Ether balance.	PASS	
Hash Collisions Variable	SWC-133	Using abi.encodePacked() with multiple variable length arguments can, in certain situations, lead to a hash collision.	· PASS	
Hardcoded gas amount	SWC-134	The transfer() and send() functions forward a fixed amount of 2300 gas.		
Unencrypted Private Data	SWC-136	It is a common misconception that private type variables cannot be read.	PASS	

SMART CONTRACT ANALYSIS

Started	Wednesday Mar 09 2022 09:34:15 GMT+0000 (Coordinated Universal Time)		
Finished	Thursday Mar 10 2022 06:37:05 GMT+0000 (Coordinated Universal Time)		
Mode	Standard		
Main Source File	CoinToken.sol		

Detected Issues

ID	Title	Severity	Status
SWC-103	A FLOATING PRAGMA IS SET.	low	acknowledged
SWC-108	STATE VARIABLE VISIBILITY IS NOT SET.	low	acknowledged
SWC-108	STATE VARIABLE VISIBILITY IS NOT SET.	low	acknowledged
SWC-110	AN ASSERTION VIOLATION WAS TRIGGERED.	low	acknowledged

SWC-103 | A FLOATING PRAGMA IS SET.

LINE 5

Iow SEVERITY

The current pragma Solidity directive is ""^0.4.24"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code.

Source File

- CoinToken.sol

```
4
5 pragma solidity ^0.4.24;
6
7 library SafeMath {
8 function mul(uint256 a, uint256 b) internal pure returns (uint256) {
9
```


SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.

LINE 122

Iow SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "tokenBlacklist" is internal. Other possible visibility settings are public and private.

Source File

- CoinToken.sol

```
121 mapping (address => mapping (address => uint256)) internal allowed;
122 mapping(address => bool) tokenBlacklist;
123 event Blacklist(address indexed blackListed, bool value);
124
125
126
```


C

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.

LINE 126

Iow SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "balances" is internal. Other possible visibility settings are public and private.

Source File

- CoinToken.sol

```
125
126 mapping(address => uint256) balances;
127
128
129 function transfer(address _to, uint256 _value) public returns (bool) {
130
```


SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.

LINE 31

Iow SEVERITY

It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to check invariants. Review the transaction trace generated for this issue and either make sure your program logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees (for instance, via return values).

Source File

- CoinToken.sol

```
30 uint256 c = a + b;
31 assert(c >= a);
32 return c;
33 }
34 }
35
```


DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions provided to you ("Customer" or the "Company") in connection with the Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in each instance.

This report is not, nor should be considered, an "endorsement" or "disapproval" of any particular project or team. This report is not, nor should be considered, an indication of the economics or value of any "product" or "asset" created by any team or project that contracts Sysfixed to perform a security assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies proprietors, business, business model, or legal compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms based on smart contracts, the details of which are set out in this report. In order to get a full view of our analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and producing this report, it is important to note that you should not rely on this report and cannot claim against us on the basis of what it says or doesn't say, or how we produced it, and it is important for you to conduct your own independent investigations before making any decisions. We go into more detail on this in the below disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any particular project. This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report represents an extensive assessing process intending to help our customers increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other representatives) (Sysfixed) owe no duty of care.

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts. Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and improvement of our tools and techniques used to fortify your code.