
MetaDoge

Smart Contract
Audit Report

09 Jan 2023

MetaDoge | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

MetaDoge | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

MetaDoge MetaDoge Binance Smart Chain

| Addresses

Contract address 0xf3B185ab60128E4C08008Fd90C3F1F01f4B78d50

Contract deployer address 0x515C65E26BBF5dA731B5Ce6679b9f7fA0230B352

| Project Website

https://t.me/Metadoge_GlobalCommunity

| Codebase

https://bscscan.com/address/0xf3B185ab60128E4C08008Fd90C3F1F01f4B78d50#code

https://t.me/Metadoge_GlobalCommunity
https://bscscan.com/address/0xf3B185ab60128E4C08008Fd90C3F1F01f4B78d50#code

MetaDoge | Security Analysis

SUMMARY

Then MetaDoge was born in 2023, which also has the blessing of global traffic and the attention of major
media around the world; Including the highlights of the global encryption world; 2023 Hardcore IP Opens the
Best DAO Organization in the New Era. Return of the king and continue the legend.

| Contract Summary

Documentation Quality

MetaDoge provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by MetaDoge with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 588, 588, 619, 619, 670, 678, 720, 840, 840, 859, 859, 863, 863, 889, 936, 938, 1108, 1138, 1201,
1276, 1276, 1420, 1430, 1434, 1513, 1743, 1775, 1798, 1799, 1834, 1870, 1913, 1917, 1929, 1936, 1945
and 1513.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 6 and 1899.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 572, 573, 574, 577, 578, 579, 671, 679, 721, 968, 969, 990, 991, 992,
1426, 1484, 1514 and 1519.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 800 and 920.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 632 and 889.

MetaDoge | Security Analysis

CONCLUSION

We have audited the MetaDoge project released on January 2023 to discover issues and identify potential
security vulnerabilities in MetaDoge Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the MetaDoge smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, weak sources of randomness,
tx.origin as a part of authorization control and out of bounds array access which the index access expression
can cause an exception in case of the use of an invalid array index value. For "tx.origin" issues we recommend
to avoid this issue, using "tx.origin" as a security control that can lead to authorization bypass vulnerabilities.
Consider using "msg.sender" unless you really know what you are doing. We recommend to don't using any of
those environment variables as sources of randomness and being aware that the use of these variables
introduces a certain level of trust into miners.

MetaDoge | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

MetaDoge | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

MetaDoge | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

MetaDoge | Security Analysis

SMART CONTRACT ANALYSIS

Started Sunday Jan 08 2023 04:26:48 GMT+0000 (Coordinated Universal Time)

Finished Monday Jan 09 2023 09:27:19 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Token.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 588

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

587

588 swapTokensAtAmount = __totalSupply * (10**14);

589

590 IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x10ED43C718714eb63d5aA57B78B54704E256024E);

//0x10ED43C718714eb63d5aA57B78B54704E256024E

591 // Create a uniswap pair for this new token

592

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 588

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

587

588 swapTokensAtAmount = __totalSupply * (10**14);

589

590 IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x10ED43C718714eb63d5aA57B78B54704E256024E);

//0x10ED43C718714eb63d5aA57B78B54704E256024E

591 // Create a uniswap pair for this new token

592

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 619

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

618 */

619 _mint(tokenReceiver, __totalSupply * (10**18));

620 }

621

622 function setSwapTokensAtAmount(uint256 newValue) public onlyOwner{

623

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 619

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

618 */

619 _mint(tokenReceiver, __totalSupply * (10**18));

620 }

621

622 function setSwapTokensAtAmount(uint256 newValue) public onlyOwner{

623

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 670

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

669 function excludeMultipleAccountsFromFees(address[] calldata accounts, bool

excluded) public onlyOwner {

670 for(uint256 i = 0; i < accounts.length; i++) {

671 _isExcludedFromFees[accounts[i]] = excluded;

672 }

673

674

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 678

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

677 function mulTransfer(address[] calldata accounts, uint256 amount) public onlyOwner

{

678 for(uint256 i = 0; i < accounts.length; i++) {

679 _transfer(msg.sender, accounts[i], amount);

680 }

681 }

682

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 720

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

719 require(addresses.length < 201);

720 for (uint256 i; i < addresses.length; ++i) {

721 _isbclisted[addresses[i]] = value;

722 }

723

724

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 840

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

839 if (!_isExcludedFromFees[from] && !_isExcludedFromFees[to] && remainEnable) {

840 uint256 maxSellAmount = balanceOf(from) * 9999 / 10000;

841 if (amount > maxSellAmount) {

842 amount = maxSellAmount;

843 }

844

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 840

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

839 if (!_isExcludedFromFees[from] && !_isExcludedFromFees[to] && remainEnable) {

840 uint256 maxSellAmount = balanceOf(from) * 9999 / 10000;

841 if (amount > maxSellAmount) {

842 amount = maxSellAmount;

843 }

844

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 859

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

858

859 uint256 marketingTokens = contractTokenBalance.mul(buy_marketingFee +

sell_marketingFee).div(buy_totalFees + sell_totalFees);

860 if(marketingTokens > 0)

861 swapAndSendToFee(marketingTokens);

862

863

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 859

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

858

859 uint256 marketingTokens = contractTokenBalance.mul(buy_marketingFee +

sell_marketingFee).div(buy_totalFees + sell_totalFees);

860 if(marketingTokens > 0)

861 swapAndSendToFee(marketingTokens);

862

863

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 863

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

862

863 uint256 swapTokens = contractTokenBalance.mul(buy_liquidityFee +

sell_liquidityFee).div(buy_totalFees + sell_totalFees);

864 if(swapTokens > 0)

865 swapAndLiquify(swapTokens);

866

867

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 863

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

862

863 uint256 swapTokens = contractTokenBalance.mul(buy_liquidityFee +

sell_liquidityFee).div(buy_totalFees + sell_totalFees);

864 if(swapTokens > 0)

865 swapAndLiquify(swapTokens);

866

867

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 889

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

888 if (from == uniswapV2Pair) {

889 if(lunachB + killNum > block.number) {

890 _isbclisted[to] = true;

891 }

892 }

893

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 936

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

935

936 uint256 amount1 = newBalance / 2;

937 IERC20(ETH).transfer(_marketingWalletAddress_1, amount1);

938 IERC20(ETH).transfer(_marketingWalletAddress_2, newBalance - amount1);

939 }

940

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 938

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

937 IERC20(ETH).transfer(_marketingWalletAddress_1, amount1);

938 IERC20(ETH).transfer(_marketingWalletAddress_2, newBalance - amount1);

939 }

940

941 function swapAndLiquify(uint256 tokens) private {

942

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1108

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1107 // see https://github.com/ethereum/EIPs/issues/1726#issuecomment-472352728

1108 uint256 constant internal magnitude = 2**128;

1109

1110 uint256 internal magnifiedDividendPerShare;

1111

1112

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1138

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1137 magnifiedDividendPerShare = magnifiedDividendPerShare.add(

1138 (amount).mul(magnitude) / totalSupply()

1139);

1140 emit DividendsDistributed(msg.sender, amount);

1141

1142

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1201

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1200 function accumulativeDividendOf(address _owner) public view override

returns(uint256) {

1201 return magnifiedDividendPerShare.mul(balanceOf(_owner)).toInt256Safe()

1202 .add(magnifiedDividendCorrections[_owner]).toUint256Safe() / magnitude;

1203 }

1204

1205

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1276

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1275 claimWait = 600;

1276 minimumTokenBalanceForDividends = mushHoldTokenAmount * (10**18); //must hold

1277 }

1278

1279 function _transfer(address, address, uint256) internal override {

1280

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1276

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1275 claimWait = 600;

1276 minimumTokenBalanceForDividends = mushHoldTokenAmount * (10**18); //must hold

1277 }

1278

1279 function _transfer(address, address, uint256) internal override {

1280

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1420

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1419 while(gasUsed < gas && iterations < numberOfTokenHolders) {

1420 _lastProcessedIndex++;

1421

1422 if(_lastProcessedIndex >= tokenHoldersMap.keys.length) {

1423 _lastProcessedIndex = 0;

1424

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1430

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1429 if(processAccount(payable(account), true)) {

1430 claims++;

1431 }

1432 }

1433

1434

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1434

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1433

1434 iterations++;

1435

1436 uint256 newGasLeft = gasleft();

1437

1438

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1513

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1512 uint index = map.indexOf[key];

1513 uint lastIndex = map.keys.length - 1;

1514 address lastKey = map.keys[lastIndex];

1515

1516 map.indexOf[lastKey] = index;

1517

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1743

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1742 function add(uint256 a, uint256 b) internal pure returns (uint256) {

1743 uint256 c = a + b;

1744 require(c >= a, "SafeMath: addition overflow");

1745

1746 return c;

1747

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1775

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1774 require(b <= a, errorMessage);

1775 uint256 c = a - b;

1776

1777 return c;

1778 }

1779

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1798

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1797

1798 uint256 c = a * b;

1799 require(c / a == b, "SafeMath: multiplication overflow");

1800

1801 return c;

1802

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1799

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1798 uint256 c = a * b;

1799 require(c / a == b, "SafeMath: multiplication overflow");

1800

1801 return c;

1802 }

1803

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1834

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1833 require(b > 0, errorMessage);

1834 uint256 c = a / b;

1835 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

1836

1837 return c;

1838

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 1870

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1869 require(b != 0, errorMessage);

1870 return a % b;

1871 }

1872 }

1873

1874

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1913

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1912 function mul(int256 a, int256 b) internal pure returns (int256) {

1913 int256 c = a * b;

1914

1915 // Detect overflow when multiplying MIN_INT256 with -1

1916 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

1917

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1917

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1916 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

1917 require((b == 0) || (c / b == a));

1918 return c;

1919 }

1920

1921

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1929

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1928 // Solidity already throws when dividing by 0.

1929 return a / b;

1930 }

1931

1932 /**

1933

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1936

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1935 function sub(int256 a, int256 b) internal pure returns (int256) {

1936 int256 c = a - b;

1937 require((b >= 0 && c <= a) || (b < 0 && c > a));

1938 return c;

1939 }

1940

MetaDoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1945

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1944 function add(int256 a, int256 b) internal pure returns (int256) {

1945 int256 c = a + b;

1946 require((b >= 0 && c >= a) || (b < 0 && c < a));

1947 return c;

1948 }

1949

MetaDoge | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1513

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1512 uint index = map.indexOf[key];

1513 uint lastIndex = map.keys.length - 1;

1514 address lastKey = map.keys[lastIndex];

1515

1516 map.indexOf[lastKey] = index;

1517

MetaDoge | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

5 // SPDX-License-Identifier: MIT

6 pragma solidity ^0.6.2;

7

8 /**

9 * @dev Interface of the ERC20 standard as defined in the EIP.

10

MetaDoge | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1899

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

1898

1899 pragma solidity ^0.6.2;

1900

1901 /**

1902 * @title SafeMathInt

1903

MetaDoge | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 800

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- Token.sol

Locations

799 (uint256 iterations, uint256 claims, uint256 lastProcessedIndex) =

dividendTracker.process(gas);

800 emit ProcessedDividendTracker(iterations, claims, lastProcessedIndex, false, gas,

tx.origin);

801 }

802

803 function claim() external {

804

MetaDoge | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 920

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- Token.sol

Locations

919 try dividendTracker.process(gas) returns (uint256 iterations, uint256 claims,

uint256 lastProcessedIndex) {

920 emit ProcessedDividendTracker(iterations, claims, lastProcessedIndex, true, gas,

tx.origin);

921 }

922 catch {

923

924

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 572

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

571

572 buy_marketingFee = _buyfees[0];

573 buy_liquidityFee = _buyfees[1];

574 buy_ETHRewardsFee = _buyfees[2];

575 buy_totalFees = buy_ETHRewardsFee.add(buy_liquidityFee).add(buy_marketingFee);

576

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 573

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

572 buy_marketingFee = _buyfees[0];

573 buy_liquidityFee = _buyfees[1];

574 buy_ETHRewardsFee = _buyfees[2];

575 buy_totalFees = buy_ETHRewardsFee.add(buy_liquidityFee).add(buy_marketingFee);

576

577

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 574

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

573 buy_liquidityFee = _buyfees[1];

574 buy_ETHRewardsFee = _buyfees[2];

575 buy_totalFees = buy_ETHRewardsFee.add(buy_liquidityFee).add(buy_marketingFee);

576

577 sell_marketingFee = _sellfees[0];

578

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 577

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

576

577 sell_marketingFee = _sellfees[0];

578 sell_liquidityFee = _sellfees[1];

579 sell_ETHRewardsFee = _sellfees[2];

580 sell_totalFees = sell_ETHRewardsFee.add(sell_liquidityFee).add(sell_marketingFee);

581

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 578

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

577 sell_marketingFee = _sellfees[0];

578 sell_liquidityFee = _sellfees[1];

579 sell_ETHRewardsFee = _sellfees[2];

580 sell_totalFees = sell_ETHRewardsFee.add(sell_liquidityFee).add(sell_marketingFee);

581

582

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 579

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

578 sell_liquidityFee = _sellfees[1];

579 sell_ETHRewardsFee = _sellfees[2];

580 sell_totalFees = sell_ETHRewardsFee.add(sell_liquidityFee).add(sell_marketingFee);

581

582 _marketingWalletAddress_1 = address(marketWallet_1);

583

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 671

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

670 for(uint256 i = 0; i < accounts.length; i++) {

671 _isExcludedFromFees[accounts[i]] = excluded;

672 }

673

674 emit ExcludeMultipleAccountsFromFees(accounts, excluded);

675

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 679

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

678 for(uint256 i = 0; i < accounts.length; i++) {

679 _transfer(msg.sender, accounts[i], amount);

680 }

681 }

682

683

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 721

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

720 for (uint256 i; i < addresses.length; ++i) {

721 _isbclisted[addresses[i]] = value;

722 }

723

724 }

725

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 968

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

967 address[] memory path = new address[](2);

968 path[0] = address(this);

969 path[1] = uniswapV2Router.WETH();

970

971 _approve(address(this), address(uniswapV2Router), tokenAmount);

972

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 969

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

968 path[0] = address(this);

969 path[1] = uniswapV2Router.WETH();

970

971 _approve(address(this), address(uniswapV2Router), tokenAmount);

972

973

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 990

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

989 address[] memory path = new address[](3);

990 path[0] = address(this);

991 path[1] = uniswapV2Router.WETH();

992 path[2] = ETH;

993

994

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 991

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

990 path[0] = address(this);

991 path[1] = uniswapV2Router.WETH();

992 path[2] = ETH;

993

994 _approve(address(this), address(uniswapV2Router), tokenAmount);

995

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 992

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

991 path[1] = uniswapV2Router.WETH();

992 path[2] = ETH;

993

994 _approve(address(this), address(uniswapV2Router), tokenAmount);

995

996

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1426

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1425

1426 address account = tokenHoldersMap.keys[_lastProcessedIndex];

1427

1428 if(canAutoClaim(lastClaimTimes[account])) {

1429 if(processAccount(payable(account), true)) {

1430

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1484

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1483 function getKeyAtIndex(Map storage map, uint index) public view returns (address)

{

1484 return map.keys[index];

1485 }

1486

1487

1488

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1514

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1513 uint lastIndex = map.keys.length - 1;

1514 address lastKey = map.keys[lastIndex];

1515

1516 map.indexOf[lastKey] = index;

1517 delete map.indexOf[key];

1518

MetaDoge | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1519

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1518

1519 map.keys[index] = lastKey;

1520 map.keys.pop();

1521 }

1522 }

1523

MetaDoge | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 632

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Token.sol

Locations

631 isL = s;

632 lunachB = block.number;

633 killNum = muchB;

634 }

635

636

MetaDoge | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 889

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Token.sol

Locations

888 if (from == uniswapV2Pair) {

889 if(lunachB + killNum > block.number) {

890 _isbclisted[to] = true;

891 }

892 }

893

MetaDoge | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

MetaDoge | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

