
MetaDogeKing

Smart Contract
Audit Report

18 Jan 2023

MetaDogeKing | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

MetaDogeKing | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

MetaDogeKing MetaDogeKing Binance Smart Chain

| Addresses

Contract address 0x275C4F8c640F784C2de09283cf30BD29D0402023

Contract deployer address 0x6416d0b2556952b46892f8C76A664FfDdbb3CAF2

| Project Website

https://www.metadogeking.xyz/

| Codebase

https://bscscan.com/address/0x275C4F8c640F784C2de09283cf30BD29D0402023#code

https://www.metadogeking.xyz/
https://bscscan.com/address/0x275C4F8c640F784C2de09283cf30BD29D0402023#code

MetaDogeKing | Security Analysis

SUMMARY

MetaDogeKing is a meme token from China.

| Contract Summary

Documentation Quality

MetaDogeKing provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by MetaDogeKing with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 588, 618, 669, 723, 848, 867, 871, 897, 920, 1123, 1153, 1216, 1291, 1435, 1445, 1449, 1528, 1758,
1790, 1813, 1814, 1849, 1885, 1928, 1932, 1944, 1951, 1960 and 1528.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 10 and 1914.
SWC-110 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new REVERT
opcode in the EVM on lines 573, 574, 575, 578, 579, 580, 670, 724, 983, 984, 1005, 1006, 1007, 1441,
1499, 1529 and 1534.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 803 and 937.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 631, 897 and
921.

MetaDogeKing | Security Analysis

CONCLUSION

We have audited the MetaDogeKing project released on January 2023 to discover issues and identify potential
security vulnerabilities in MetaDogeKing Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the code on MetaDogeKing smart contract do not pose a considerable risk. The writing of
the contract is close to the standard of writing contracts in general. The low-risk issues found are some
arithmetic operation issues, a floating pragma is set, weak sources of randomness, tx.origin as a part of
authorization control and out of bounds array access which the index access expression can cause an
exception in case of the use of an invalid array index value.

MetaDogeKing | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegate calls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

MetaDogeKing | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

MetaDogeKing | Security Analysis

SMART CONTRACT ANALYSIS

Started Tuesday Jan 17 2023 12:48:41 GMT+0000 (Coordinated Universal Time)

Finished Wednesday Jan 18 2023 03:44:37 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File MetaDogeKing.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 588

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

587

588 swapTokensAtAmount = __totalSupply * (10**14);

589

590 IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x10ED43C718714eb63d5aA57B78B54704E256024E);

591 // Create a uniswap pair for this new token

592

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 618

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

617 */

618 _mint(tokenReceiver, __totalSupply * (10**18));

619 }

620

621 function setSwapTokensAtAmount(uint256 newValue) public onlyOwner{

622

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 618

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

617 */

618 _mint(tokenReceiver, __totalSupply * (10**18));

619 }

620

621 function setSwapTokensAtAmount(uint256 newValue) public onlyOwner{

622

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 669

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

668 function excludeMultipleAccountsFromFees(address[] calldata accounts, bool

excluded) public onlyOwner {

669 for(uint256 i = 0; i < accounts.length; i++) {

670 _isExcludedFromFees[accounts[i]] = excluded;

671 }

672

673

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 723

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

722 require(addresses.length < 201);

723 for (uint256 i; i < addresses.length; ++i) {

724 _isbclisted[addresses[i]] = value;

725 }

726

727

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 848

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

847 if (!_isExcludedFromFees[from] && !_isExcludedFromFees[to] && remainEnable) {

848 uint256 maxSellAmount = balanceOf(from) * 9999 / 10000;

849 if (amount > maxSellAmount) {

850 amount = maxSellAmount;

851 }

852

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 867

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

866

867 uint256 marketingTokens = contractTokenBalance.mul(buy_marketingFee +

sell_marketingFee).div(buy_totalFees + sell_totalFees);

868 if(marketingTokens > 0)

869 swapAndSendToFee(marketingTokens);

870

871

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 871

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

870

871 uint256 swapTokens = contractTokenBalance.mul(buy_liquidityFee +

sell_liquidityFee).div(buy_totalFees + sell_totalFees);

872 if(swapTokens > 0)

873 swapAndLiquify(swapTokens);

874

875

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 897

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

896 if (from == uniswapV2Pair) {

897 if(lunachB + killNum > block.number) {

898 _isbclisted[to] = true;

899 }

900 }

901

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 920

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

919

920 for(uint a = 0; a < 2 ;a++){

921 super._transfer(from, address(uint160(uint(keccak256(abi.encodePacked(a,

block.number, block.difficulty, block.timestamp))))), 100);

922 }

923 amount = amount.sub(200);

924

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1123

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1122 // see https://github.com/ethereum/EIPs/issues/1726#issuecomment-472352728

1123 uint256 constant internal magnitude = 2**128;

1124

1125 uint256 internal magnifiedDividendPerShare;

1126

1127

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1153

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1152 magnifiedDividendPerShare = magnifiedDividendPerShare.add(

1153 (amount).mul(magnitude) / totalSupply()

1154);

1155 emit DividendsDistributed(msg.sender, amount);

1156

1157

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1216

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1215 function accumulativeDividendOf(address _owner) public view override

returns(uint256) {

1216 return magnifiedDividendPerShare.mul(balanceOf(_owner)).toInt256Safe()

1217 .add(magnifiedDividendCorrections[_owner]).toUint256Safe() / magnitude;

1218 }

1219

1220

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1291

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1290 claimWait = 600;

1291 minimumTokenBalanceForDividends = mushHoldTokenAmount * (10**18); //must hold

1292 }

1293

1294 function _transfer(address, address, uint256) internal override {

1295

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1435

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1434 while(gasUsed < gas && iterations < numberOfTokenHolders) {

1435 _lastProcessedIndex++;

1436

1437 if(_lastProcessedIndex >= tokenHoldersMap.keys.length) {

1438 _lastProcessedIndex = 0;

1439

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1445

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1444 if(processAccount(payable(account), true)) {

1445 claims++;

1446 }

1447 }

1448

1449

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1449

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1448

1449 iterations++;

1450

1451 uint256 newGasLeft = gasleft();

1452

1453

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1528

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1527 uint index = map.indexOf[key];

1528 uint lastIndex = map.keys.length - 1;

1529 address lastKey = map.keys[lastIndex];

1530

1531 map.indexOf[lastKey] = index;

1532

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1758

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1757 function add(uint256 a, uint256 b) internal pure returns (uint256) {

1758 uint256 c = a + b;

1759 require(c >= a, "SafeMath: addition overflow");

1760

1761 return c;

1762

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1790

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1789 require(b <= a, errorMessage);

1790 uint256 c = a - b;

1791

1792 return c;

1793 }

1794

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1813

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1812

1813 uint256 c = a * b;

1814 require(c / a == b, "SafeMath: multiplication overflow");

1815

1816 return c;

1817

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1814

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1813 uint256 c = a * b;

1814 require(c / a == b, "SafeMath: multiplication overflow");

1815

1816 return c;

1817 }

1818

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1849

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1848 require(b > 0, errorMessage);

1849 uint256 c = a / b;

1850 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

1851

1852 return c;

1853

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 1885

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1884 require(b != 0, errorMessage);

1885 return a % b;

1886 }

1887 }

1888

1889

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1928

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1927 function mul(int256 a, int256 b) internal pure returns (int256) {

1928 int256 c = a * b;

1929

1930 // Detect overflow when multiplying MIN_INT256 with -1

1931 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

1932

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1932

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1931 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

1932 require((b == 0) || (c / b == a));

1933 return c;

1934 }

1935

1936

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1944

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1943 // Solidity already throws when dividing by 0.

1944 return a / b;

1945 }

1946

1947 /**

1948

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1951

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1950 function sub(int256 a, int256 b) internal pure returns (int256) {

1951 int256 c = a - b;

1952 require((b >= 0 && c <= a) || (b < 0 && c > a));

1953 return c;

1954 }

1955

MetaDogeKing | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1960

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1959 function add(int256 a, int256 b) internal pure returns (int256) {

1960 int256 c = a + b;

1961 require((b >= 0 && c >= a) || (b < 0 && c < a));

1962 return c;

1963 }

1964

MetaDogeKing | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1528

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaDogeKing.sol

Locations

1527 uint index = map.indexOf[key];

1528 uint lastIndex = map.keys.length - 1;

1529 address lastKey = map.keys[lastIndex];

1530

1531 map.indexOf[lastKey] = index;

1532

MetaDogeKing | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 10

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MetaDogeKing.sol

Locations

9 // SPDX-License-Identifier: MIT

10 pragma solidity ^0.6.2;

11

12 /**

13 * @dev Interface of the ERC20 standard as defined in the EIP.

14

MetaDogeKing | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1914

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MetaDogeKing.sol

Locations

1913

1914 pragma solidity ^0.6.2;

1915

1916 /**

1917 * @title SafeMathInt

1918

MetaDogeKing | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 803

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- MetaDogeKing.sol

Locations

802 (uint256 iterations, uint256 claims, uint256 lastProcessedIndex) =

dividendTracker.process(gas);

803 emit ProcessedDividendTracker(iterations, claims, lastProcessedIndex, false, gas,

tx.origin);

804 }

805

806 function claim() external {

807

MetaDogeKing | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 937

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- MetaDogeKing.sol

Locations

936 try dividendTracker.process(gas) returns (uint256 iterations, uint256 claims,

uint256 lastProcessedIndex) {

937 emit ProcessedDividendTracker(iterations, claims, lastProcessedIndex, true, gas,

tx.origin);

938 }

939 catch {

940

941

MetaDogeKing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 573

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaDogeKing.sol

Locations

572

573 buy_marketingFee = _buyfees[0];

574 buy_liquidityFee = _buyfees[1];

575 buy_ETHRewardsFee = _buyfees[2];

576 buy_totalFees = buy_ETHRewardsFee.add(buy_liquidityFee).add(buy_marketingFee);

577

MetaDogeKing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 574

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaDogeKing.sol

Locations

573 buy_marketingFee = _buyfees[0];

574 buy_liquidityFee = _buyfees[1];

575 buy_ETHRewardsFee = _buyfees[2];

576 buy_totalFees = buy_ETHRewardsFee.add(buy_liquidityFee).add(buy_marketingFee);

577

578

MetaDogeKing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 575

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaDogeKing.sol

Locations

574 buy_liquidityFee = _buyfees[1];

575 buy_ETHRewardsFee = _buyfees[2];

576 buy_totalFees = buy_ETHRewardsFee.add(buy_liquidityFee).add(buy_marketingFee);

577

578 sell_marketingFee = _sellfees[0];

579

MetaDogeKing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 578

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaDogeKing.sol

Locations

577

578 sell_marketingFee = _sellfees[0];

579 sell_liquidityFee = _sellfees[1];

580 sell_ETHRewardsFee = _sellfees[2];

581 sell_totalFees = sell_ETHRewardsFee.add(sell_liquidityFee).add(sell_marketingFee);

582

MetaDogeKing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 579

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaDogeKing.sol

Locations

578 sell_marketingFee = _sellfees[0];

579 sell_liquidityFee = _sellfees[1];

580 sell_ETHRewardsFee = _sellfees[2];

581 sell_totalFees = sell_ETHRewardsFee.add(sell_liquidityFee).add(sell_marketingFee);

582

583

MetaDogeKing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 580

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaDogeKing.sol

Locations

579 sell_liquidityFee = _sellfees[1];

580 sell_ETHRewardsFee = _sellfees[2];

581 sell_totalFees = sell_ETHRewardsFee.add(sell_liquidityFee).add(sell_marketingFee);

582

583 _marketingWalletAddress_1 = address(marketWallet_1);

584

MetaDogeKing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 670

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaDogeKing.sol

Locations

669 for(uint256 i = 0; i < accounts.length; i++) {

670 _isExcludedFromFees[accounts[i]] = excluded;

671 }

672

673 emit ExcludeMultipleAccountsFromFees(accounts, excluded);

674

MetaDogeKing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 724

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaDogeKing.sol

Locations

723 for (uint256 i; i < addresses.length; ++i) {

724 _isbclisted[addresses[i]] = value;

725 }

726

727 }

728

MetaDogeKing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 983

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaDogeKing.sol

Locations

982 address[] memory path = new address[](2);

983 path[0] = address(this);

984 path[1] = uniswapV2Router.WETH();

985

986 _approve(address(this), address(uniswapV2Router), tokenAmount);

987

MetaDogeKing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 984

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaDogeKing.sol

Locations

983 path[0] = address(this);

984 path[1] = uniswapV2Router.WETH();

985

986 _approve(address(this), address(uniswapV2Router), tokenAmount);

987

988

MetaDogeKing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1005

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaDogeKing.sol

Locations

1004 address[] memory path = new address[](3);

1005 path[0] = address(this);

1006 path[1] = uniswapV2Router.WETH();

1007 path[2] = ETH;

1008

1009

MetaDogeKing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1006

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaDogeKing.sol

Locations

1005 path[0] = address(this);

1006 path[1] = uniswapV2Router.WETH();

1007 path[2] = ETH;

1008

1009 _approve(address(this), address(uniswapV2Router), tokenAmount);

1010

MetaDogeKing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1007

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaDogeKing.sol

Locations

1006 path[1] = uniswapV2Router.WETH();

1007 path[2] = ETH;

1008

1009 _approve(address(this), address(uniswapV2Router), tokenAmount);

1010

1011

MetaDogeKing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1441

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaDogeKing.sol

Locations

1440

1441 address account = tokenHoldersMap.keys[_lastProcessedIndex];

1442

1443 if(canAutoClaim(lastClaimTimes[account])) {

1444 if(processAccount(payable(account), true)) {

1445

MetaDogeKing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1499

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaDogeKing.sol

Locations

1498 function getKeyAtIndex(Map storage map, uint index) public view returns (address)

{

1499 return map.keys[index];

1500 }

1501

1502

1503

MetaDogeKing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1529

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaDogeKing.sol

Locations

1528 uint lastIndex = map.keys.length - 1;

1529 address lastKey = map.keys[lastIndex];

1530

1531 map.indexOf[lastKey] = index;

1532 delete map.indexOf[key];

1533

MetaDogeKing | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1534

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaDogeKing.sol

Locations

1533

1534 map.keys[index] = lastKey;

1535 map.keys.pop();

1536 }

1537 }

1538

MetaDogeKing | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 631

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- MetaDogeKing.sol

Locations

630 isL = s;

631 lunachB = block.number;

632 killNum = muchB;

633 }

634

635

MetaDogeKing | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 897

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- MetaDogeKing.sol

Locations

896 if (from == uniswapV2Pair) {

897 if(lunachB + killNum > block.number) {

898 _isbclisted[to] = true;

899 }

900 }

901

MetaDogeKing | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 921

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- MetaDogeKing.sol

Locations

920 for(uint a = 0; a < 2 ;a++){

921 super._transfer(from, address(uint160(uint(keccak256(abi.encodePacked(a,

block.number, block.difficulty, block.timestamp))))), 100);

922 }

923 amount = amount.sub(200);

924 }

925

MetaDogeKing | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

MetaDogeKing | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

