
Rising Sun

Smart Contract
Audit Report

24 Mar 2022

Rising Sun | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Rising Sun | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Rising Sun SUN Ethereum

| Addresses

Contract address 0x50522c769e01eb06c02bd299066509d8f97a69ae

Contract deployer address 0xA46b0841396C539C7a92905d4984856E1D177A40

| Project Website

https://risingsuncoin.io/

| Codebase

https://etherscan.io/address/0x50522c769e01eb06c02bd299066509d8f97a69ae#code

https://risingsuncoin.io/
https://etherscan.io/address/0x50522c769e01eb06c02bd299066509d8f97a69ae#code

Rising Sun | Security Analysis

SUMMARY

The Rising Sun project is focused on building generational wealth and providing passive income for our
investors through ETH reflections, NFT staking and leveraging utilities we can bring to our platform creating an
ecosystem of wealth.

| Contract Summary

Documentation Quality

Rising Sun provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Rising Sun with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 1724.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 178, 192, 206, 220, 242, 256, 271, 272, 285, 297, 312, 326, 340, 354, 370, 393, 416, 442, 953, 972,
994, 1027, 1029, 1050, 1051, 1076, 1078, 1267, 1353, 1400, 1463, 1536, 1536, 1680, 1690, 1694, 1763,
1781, 1781, 1782, 1782, 1902, 1902, 1933, 2081, 2081, 2085, 2085, 2086, 2088, 2114, 2124, 2140 and
1267.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 7.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1238, 1268, 1273, 1686, 1764, 1934, 2151 and 2152.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 2024 and
2101.

Rising Sun | Security Analysis

CONCLUSION

We have audited the Rising Sun project released on march 2023 to discover issues and identify potential
security vulnerabilities in Rising Sun Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Rising Sun smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, tx.origin as a part of authorization
control, tx.origin should not be used for authorization, use msg.sender instead. Out-of-bounds array access
which the index access expression can cause an exception in case of the use of an invalid array index value.

Rising Sun | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Rising Sun | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Rising Sun | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Rising Sun | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Mar 23 2022 15:50:11 GMT+0000 (Coordinated Universal Time)

Finished Thursday Mar 24 2022 11:24:24 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File SUN.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 178

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

177 function mul(int256 a, int256 b) internal pure returns (int256) {

178 return a * b;

179 }

180

181 /**

182

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 192

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

191 function div(int256 a, int256 b) internal pure returns (int256) {

192 return a / b;

193 }

194

195 /**

196

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 206

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

205 function sub(int256 a, int256 b) internal pure returns (int256) {

206 return a - b;

207 }

208

209 /**

210

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 220

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

219 function add(int256 a, int256 b) internal pure returns (int256) {

220 return a + b;

221 }

222 }

223

224

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 242

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

241 unchecked {

242 uint256 c = a + b;

243 if (c < a) return (false, 0);

244 return (true, c);

245 }

246

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 256

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

255 if (b > a) return (false, 0);

256 return (true, a - b);

257 }

258 }

259

260

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 271

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

270 if (a == 0) return (true, 0);

271 uint256 c = a * b;

272 if (c / a != b) return (false, 0);

273 return (true, c);

274 }

275

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 272

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

271 uint256 c = a * b;

272 if (c / a != b) return (false, 0);

273 return (true, c);

274 }

275 }

276

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 285

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

284 if (b == 0) return (false, 0);

285 return (true, a / b);

286 }

287 }

288

289

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 297

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

296 if (b == 0) return (false, 0);

297 return (true, a % b);

298 }

299 }

300

301

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 312

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

311 function add(uint256 a, uint256 b) internal pure returns (uint256) {

312 return a + b;

313 }

314

315 /**

316

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 326

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

325 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

326 return a - b;

327 }

328

329 /**

330

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 340

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

339 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

340 return a * b;

341 }

342

343 /**

344

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 354

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

353 function div(uint256 a, uint256 b) internal pure returns (uint256) {

354 return a / b;

355 }

356

357 /**

358

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 370

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

369 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

370 return a % b;

371 }

372

373 /**

374

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 393

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

392 require(b <= a, errorMessage);

393 return a - b;

394 }

395 }

396

397

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 416

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

415 require(b > 0, errorMessage);

416 return a / b;

417 }

418 }

419

420

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 442

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

441 require(b > 0, errorMessage);

442 return a % b;

443 }

444 }

445 }

446

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 953

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

952 unchecked {

953 _approve(sender, _msgSender(), currentAllowance - amount);

954 }

955

956 return true;

957

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 972

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

971 function increaseAllowance(address spender, uint256 addedValue) public virtual

returns (bool) {

972 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

973 return true;

974 }

975

976

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 994

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

993 unchecked {

994 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

995 }

996

997 return true;

998

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1027

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1026 unchecked {

1027 _balances[sender] = senderBalance - amount;

1028 }

1029 _balances[recipient] += amount;

1030

1031

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1029

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1028 }

1029 _balances[recipient] += amount;

1030

1031 emit Transfer(sender, recipient, amount);

1032

1033

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1050

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1049

1050 _totalSupply += amount;

1051 _balances[account] += amount;

1052 emit Transfer(address(0), account, amount);

1053

1054

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1051

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1050 _totalSupply += amount;

1051 _balances[account] += amount;

1052 emit Transfer(address(0), account, amount);

1053

1054 _afterTokenTransfer(address(0), account, amount);

1055

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1076

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1075 unchecked {

1076 _balances[account] = accountBalance - amount;

1077 }

1078 _totalSupply -= amount;

1079

1080

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 1078

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1077 }

1078 _totalSupply -= amount;

1079

1080 emit Transfer(account, address(0), amount);

1081

1082

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1267

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1266 uint index = map.indexOf[key];

1267 uint lastIndex = map.keys.length - 1;

1268 address lastKey = map.keys[lastIndex];

1269

1270 map.indexOf[lastKey] = index;

1271

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1353

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1352 // see https://github.com/ethereum/EIPs/issues/1726#issuecomment-472352728

1353 uint256 constant internal magnitude = 2**128;

1354

1355 uint256 internal magnifiedDividendPerShare;

1356

1357

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1400

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1399 magnifiedDividendPerShare = magnifiedDividendPerShare.add(

1400 (msg.value).mul(magnitude) / totalSupply()

1401);

1402 emit DividendsDistributed(msg.sender, msg.value);

1403

1404

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1463

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1462 function accumulativeDividendOf(address _owner) public view override

returns(uint256) {

1463 return magnifiedDividendPerShare.mul(balanceOf(_owner)).toInt256()

1464 .add(magnifiedDividendCorrections[_owner]).toUint256() / magnitude;

1465 }

1466

1467

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1536

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1535 claimWait = 3600;

1536 minimumTokenBalanceForDividends = 10000 * (10**5); //must hold 10000+ tokens

1537 }

1538

1539 function _transfer(address, address, uint256) internal pure override {

1540

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1536

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1535 claimWait = 3600;

1536 minimumTokenBalanceForDividends = 10000 * (10**5); //must hold 10000+ tokens

1537 }

1538

1539 function _transfer(address, address, uint256) internal pure override {

1540

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1680

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1679 while(gasUsed < gas && iterations < numberOfTokenHolders) {

1680 _lastProcessedIndex++;

1681

1682 if(_lastProcessedIndex >= tokenHoldersMap.keys.length) {

1683 _lastProcessedIndex = 0;

1684

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1690

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1689 if(processAccount(payable(account), true)) {

1690 claims++;

1691 }

1692 }

1693

1694

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1694

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1693

1694 iterations++;

1695

1696 uint256 newGasLeft = gasleft();

1697

1698

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1763

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1762 function includeToWhiteList(address[] memory _users) external onlyOwner {

1763 for(uint8 i = 0; i < _users.length; i++) {

1764 _whiteList[_users[i]] = true;

1765 }

1766 }

1767

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1781

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1780

1781 uint256 public maxSellTransactionAmount = 1000000000000000000 * (10**5);

1782 uint256 public swapTokensAtAmount = 200000000000000 * (10**5);

1783

1784 uint256 public ETHRewardFee;

1785

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1781

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1780

1781 uint256 public maxSellTransactionAmount = 1000000000000000000 * (10**5);

1782 uint256 public swapTokensAtAmount = 200000000000000 * (10**5);

1783

1784 uint256 public ETHRewardFee;

1785

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1782

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1781 uint256 public maxSellTransactionAmount = 1000000000000000000 * (10**5);

1782 uint256 public swapTokensAtAmount = 200000000000000 * (10**5);

1783

1784 uint256 public ETHRewardFee;

1785 uint256 public liquidityFee;

1786

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1782

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1781 uint256 public maxSellTransactionAmount = 1000000000000000000 * (10**5);

1782 uint256 public swapTokensAtAmount = 200000000000000 * (10**5);

1783

1784 uint256 public ETHRewardFee;

1785 uint256 public liquidityFee;

1786

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1902

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1901 */

1902 _mint(owner(), 100000000000000000000 * (10**5));

1903 }

1904

1905 receive() external payable {

1906

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1902

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1901 */

1902 _mint(owner(), 100000000000000000000 * (10**5));

1903 }

1904

1905 receive() external payable {

1906

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1933

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1932 function excludeMultipleAccountsFromFees(address[] calldata accounts, bool

excluded) public onlyOwner {

1933 for(uint256 i = 0; i < accounts.length; i++) {

1934 _isExcludedFromFees[accounts[i]] = excluded;

1935 }

1936

1937

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 2081

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

2080 if(!_isExcludedFromFees[from] && !_isExcludedFromFees[to]) {

2081 uint256 fees = (amount*totalFees)/100;

2082 uint256 extraFee;

2083

2084 if(automatedMarketMakerPairs[to]) {

2085

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 2081

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

2080 if(!_isExcludedFromFees[from] && !_isExcludedFromFees[to]) {

2081 uint256 fees = (amount*totalFees)/100;

2082 uint256 extraFee;

2083

2084 if(automatedMarketMakerPairs[to]) {

2085

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 2085

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

2084 if(automatedMarketMakerPairs[to]) {

2085 extraFee =(amount*extraFeeOnSell)/100;

2086 fees=fees+extraFee;

2087 }

2088 amount = amount-fees;

2089

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 2085

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

2084 if(automatedMarketMakerPairs[to]) {

2085 extraFee =(amount*extraFeeOnSell)/100;

2086 fees=fees+extraFee;

2087 }

2088 amount = amount-fees;

2089

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 2086

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

2085 extraFee =(amount*extraFeeOnSell)/100;

2086 fees=fees+extraFee;

2087 }

2088 amount = amount-fees;

2089 super._transfer(from, address(this), fees); // get total fee first

2090

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2088

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

2087 }

2088 amount = amount-fees;

2089 super._transfer(from, address(this), fees); // get total fee first

2090 }

2091

2092

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2114

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

2113 // swap the remaining to BNB

2114 uint256 toSwap = contractTokenBalance-tokensToAddLiquidityWith;

2115 // capture the contract's current ETH balance.

2116 // this is so that we can capture exactly the amount of ETH that the

2117 // swap creates, and not make the liquidity event include any ETH that

2118

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2124

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

2123

2124 uint256 deltaBalance = address(this).balance-initialBalance;

2125

2126 // take worthy amount bnb to add liquidity

2127 // worthyBNB = deltaBalance * liquidity/(2totalFees - liquidityFee)

2128

Rising Sun | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2140

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

2139 if(success) {

2140 emit SendDividends(toSwap-tokensToAddLiquidityWith, dividends);

2141 }

2142

2143 emit SwapAndLiquify(tokensToAddLiquidityWith, deltaBalance);

2144

Rising Sun | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1267

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SUN.sol

Locations

1266 uint index = map.indexOf[key];

1267 uint lastIndex = map.keys.length - 1;

1268 address lastKey = map.keys[lastIndex];

1269

1270 map.indexOf[lastKey] = index;

1271

Rising Sun | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 7

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- SUN.sol

Locations

6

7 pragma solidity ^0.8.0;

8

9 interface IUniswapV2Router01 {

10 function factory() external pure returns (address);

11

Rising Sun | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1724

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "safeManager" is
internal. Other possible visibility settings are public and private.

Source File
- SUN.sol

Locations

1723 contract SafeToken is Ownable {

1724 address payable safeManager;

1725

1726 constructor() {

1727 safeManager = payable(msg.sender);

1728

Rising Sun | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 2024

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- SUN.sol

Locations

2023 (uint256 iterations, uint256 claims, uint256 lastProcessedIndex) =

dividendTracker.process(gas);

2024 emit ProcessedDividendTracker(iterations, claims, lastProcessedIndex, false, gas,

tx.origin);

2025 }

2026

2027 function claim() external {

2028

Rising Sun | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 2101

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- SUN.sol

Locations

2100 try dividendTracker.process(gas) returns (uint256 iterations, uint256 claims,

uint256 lastProcessedIndex) {

2101 emit ProcessedDividendTracker(iterations, claims, lastProcessedIndex, true, gas,

tx.origin);

2102 }

2103 catch {

2104

2105

Rising Sun | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1238

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SUN.sol

Locations

1237 function getKeyAtIndex(Map storage map, uint index) public view returns (address)

{

1238 return map.keys[index];

1239 }

1240

1241

1242

Rising Sun | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1268

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SUN.sol

Locations

1267 uint lastIndex = map.keys.length - 1;

1268 address lastKey = map.keys[lastIndex];

1269

1270 map.indexOf[lastKey] = index;

1271 delete map.indexOf[key];

1272

Rising Sun | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1273

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SUN.sol

Locations

1272

1273 map.keys[index] = lastKey;

1274 map.keys.pop();

1275 }

1276 }

1277

Rising Sun | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1686

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SUN.sol

Locations

1685

1686 address account = tokenHoldersMap.keys[_lastProcessedIndex];

1687

1688 if(canAutoClaim(lastClaimTimes[account])) {

1689 if(processAccount(payable(account), true)) {

1690

Rising Sun | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1764

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SUN.sol

Locations

1763 for(uint8 i = 0; i < _users.length; i++) {

1764 _whiteList[_users[i]] = true;

1765 }

1766 }

1767 }

1768

Rising Sun | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1934

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SUN.sol

Locations

1933 for(uint256 i = 0; i < accounts.length; i++) {

1934 _isExcludedFromFees[accounts[i]] = excluded;

1935 }

1936

1937 emit ExcludeMultipleAccountsFromFees(accounts, excluded);

1938

Rising Sun | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2151

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SUN.sol

Locations

2150 address[] memory path = new address[](2);

2151 path[0] = address(this);

2152 path[1] = uniswapV2Router.WETH();

2153

2154 if(allowance(address(this), address(uniswapV2Router)) < tokenAmount) {

2155

Rising Sun | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2152

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SUN.sol

Locations

2151 path[0] = address(this);

2152 path[1] = uniswapV2Router.WETH();

2153

2154 if(allowance(address(this), address(uniswapV2Router)) < tokenAmount) {

2155 _approve(address(this), address(uniswapV2Router), ~uint256(0));

2156

Rising Sun | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Rising Sun | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

