
Luzion Protocol

Smart Contract
Audit Report

12 Apr 2022

Luzion Protocol | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Luzion Protocol | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Luzion Protocol LZN Binance Smart Chain

| Addresses

Contract address 0x291c4e4277f8717e0552d108dbd7f795a9fef016

Contract deployer address 0x354e77bC87c8b1ff4fF00EF62f88829f23d44aD5

| Project Website

https://www.luzion.app/

| Codebase

https://bscscan.com/address/0x291c4e4277f8717e0552d108dbd7f795a9fef016#code

https://www.luzion.app/
https://bscscan.com/address/0x291c4e4277f8717e0552d108dbd7f795a9fef016#code

Luzion Protocol | Security Analysis

SUMMARY

The Luzion Protocol is a decentralized financial asset developed by the Revoluzion Ecosystem. The team
members are fully transparent and committed to creating a trustworthy and reliable project. The Luzion
Protocol utilizes the unique Auto-Staking Protocol and Auto-Reflection (ASPAR) protocol to offer a sustainable
fixed compound interest model to token holders. The ASPAR protocol automatically stakes the Luzion Protocol
token and offers features such as BUSD rewards and the highest Fixed APY in the market at 383,125.80% for
the first 12 months. The Luzion Protocol team consists of 12 experienced and skilled developers, marketers,
and operations professionals, who are dedicated to providing a fully functional protocol in the DeFi space for
the community. One of the key benefits of the Luzion Protocol is its ease and safety of staking. The Auto
staking feature allows users to receive rewards directly in their wallet without the need for complicated staking
processes. Additionally, 4% of all trading fees are stored in the Luzion Protocol Dividend Fund (LPDF), which
helps to maximize profitability, stability, and long-term sustainability. The Luzion Protocol also boasts the
fastest auto-compounding rate in crypto, with payouts to token holders every 15 minutes, or 96 times per day.
To ensure that the circulating supply of the token remains manageable, the Luzion Protocol features an
automatic token burn system called "The Black Hole," which depletes 2% of Luzion Protocol tokens from
transactions indefinitely. In addition to these features, the Luzion Protocol offers the highest Fixed APY at
383,125.80% for the first 12 months, followed by a predefined Long-term Interest Cycle period. Overall, the
Luzion Protocol is a powerful and innovative DeFi asset offering exceptional returns and benefits to token
holders.

| Contract Summary

Documentation Quality

Luzion Protocol provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Luzion Protocol with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 41, 55, 70, 71, 84, 96, 111, 125, 139, 153, 169, 192, 215, 241, 683, 706, 735, 737, 759, 760, 785, 787,
828, 1085, 1087, 1087, 1200, 1201, 1209, 1267, 1268, 1395, 1397, 1398, 1398, 1518, 1519, 1525, 1525,
1527, 1527, 1527, 1529, 1533, 1534, 1534, 1835, 1842, 1267 and 1268.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 16.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1057, 1162, 1163, 1194, 1195, 1267, 1267, 1268, 1600, 1601, 1642,
1643, 1671, 1672, 1901, 1901, 1901 and 1901.

Luzion Protocol | Security Analysis

CONCLUSION

We have audited the Luzion Protocol project released on April 2022 to discover issues and identify potential
security vulnerabilities in Luzion Protocol Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the Luzion Protocol smart contract code do not pose a considerable risk. The writing of
the contract is close to the standard of writing contracts in general. The low-risk issues found are some
arithmetic operation issues, a floating pragma is set, a public state variable with array type causing reachable
exception by default, and out-of-bounds array access which the index access expression can cause an
exception in case of the use of an invalid array index value. The current pragma Solidity directive is ""^0.8.13"".
Specifying a fixed compiler version is recommended to ensure that the bytecode produced does not vary
between builds. This is especially important if you rely on bytecode-level verification of the code.

Luzion Protocol | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Luzion Protocol | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Luzion Protocol | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Luzion Protocol | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Apr 11 2022 14:18:29 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Apr 12 2022 04:52:18 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File LuzionProtocol.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110
PUBLIC STATE VARIABLE WITH ARRAY TYPE CAUSING REACHABLE
EXCEPTION BY DEFAULT.

low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 41

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

40 unchecked {

41 uint256 c = a + b;

42 if (c < a) return (false, 0);

43 return (true, c);

44 }

45

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 55

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

54 if (b > a) return (false, 0);

55 return (true, a - b);

56 }

57 }

58

59

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 70

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

69 if (a == 0) return (true, 0);

70 uint256 c = a * b;

71 if (c / a != b) return (false, 0);

72 return (true, c);

73 }

74

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 71

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

70 uint256 c = a * b;

71 if (c / a != b) return (false, 0);

72 return (true, c);

73 }

74 }

75

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 84

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

83 if (b == 0) return (false, 0);

84 return (true, a / b);

85 }

86 }

87

88

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 96

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

95 if (b == 0) return (false, 0);

96 return (true, a % b);

97 }

98 }

99

100

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 111

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

110 function add(uint256 a, uint256 b) internal pure returns (uint256) {

111 return a + b;

112 }

113

114 /**

115

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 125

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

124 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

125 return a - b;

126 }

127

128 /**

129

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 139

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

138 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

139 return a * b;

140 }

141

142 /**

143

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 153

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

152 function div(uint256 a, uint256 b) internal pure returns (uint256) {

153 return a / b;

154 }

155

156 /**

157

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 169

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

168 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

169 return a % b;

170 }

171

172 /**

173

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 192

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

191 require(b <= a, errorMessage);

192 return a - b;

193 }

194 }

195

196

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 215

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

214 require(b > 0, errorMessage);

215 return a / b;

216 }

217 }

218

219

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 241

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

240 require(b > 0, errorMessage);

241 return a % b;

242 }

243 }

244 }

245

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 683

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

682 address owner = _msgSender();

683 _approve(owner, spender, allowance(owner, spender) + addedValue);

684 return true;

685 }

686

687

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 706

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

705 unchecked {

706 _approve(owner, spender, currentAllowance - subtractedValue);

707 }

708

709 return true;

710

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 735

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

734 unchecked {

735 _balances[from] = fromBalance - amount;

736 }

737 _balances[to] += amount;

738

739

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 737

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

736 }

737 _balances[to] += amount;

738

739 emit Transfer(from, to, amount);

740

741

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 759

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

758

759 _totalSupply += amount;

760 _balances[account] += amount;

761 emit Transfer(address(0), account, amount);

762

763

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 760

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

759 _totalSupply += amount;

760 _balances[account] += amount;

761 emit Transfer(address(0), account, amount);

762

763 _afterTokenTransfer(address(0), account, amount);

764

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 785

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

784 unchecked {

785 _balances[account] = accountBalance - amount;

786 }

787 _totalSupply -= amount;

788

789

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 787

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

786 }

787 _totalSupply -= amount;

788

789 emit Transfer(account, address(0), amount);

790

791

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 828

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

827 unchecked {

828 _approve(owner, spender, currentAllowance - amount);

829 }

830 }

831 }

832

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1085

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1084

1085 dividendsPerShareAccuracyFactor = 10**36;

1086 minPeriod = 1 hours;

1087 minDistribution = 1 * (10**rewardToken.decimals());

1088 }

1089

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1087

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1086 minPeriod = 1 hours;

1087 minDistribution = 1 * (10**rewardToken.decimals());

1088 }

1089

1090

1091

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1087

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1086 minPeriod = 1 hours;

1087 minDistribution = 1 * (10**rewardToken.decimals());

1088 }

1089

1090

1091

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1200

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1199 gasLeft = gasleft();

1200 currentIndex++;

1201 iterations++;

1202 }

1203 }

1204

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1201

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1200 currentIndex++;

1201 iterations++;

1202 }

1203 }

1204

1205

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1209

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1208 function shouldDistribute(address shareholder) internal view returns (bool) {

1209 return shareholderClaims[shareholder] + minPeriod < block.timestamp &&

getUnpaidEarnings(shareholder) > minDistribution;

1210 }

1211

1212 /**

1213

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1267

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1266 function removeShareholder(address shareholder) internal {

1267 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length -

1];

1268 shareholderIndexes[shareholders[shareholders.length - 1]] =

shareholderIndexes[shareholder];

1269 shareholders.pop();

1270 }

1271

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1268

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1267 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length -

1];

1268 shareholderIndexes[shareholders[shareholders.length - 1]] =

shareholderIndexes[shareholder];

1269 shareholders.pop();

1270 }

1271

1272

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1395

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1394 totalFee =

liquidityFee.add(treasuryFee).add(ecosystemFee).add(dividendFee).add(autoBlackholeFee);

1395 supplyInitialFragment = _supplyInitial.mul(10**5);

1396 supplyTotal = supplyInitialFragment;

1397 supplyMax = _supplyMax.mul(10**5);

1398 gonsTotal = uintMax - (uintMax % supplyInitialFragment);

1399

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1397

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1396 supplyTotal = supplyInitialFragment;

1397 supplyMax = _supplyMax.mul(10**5);

1398 gonsTotal = uintMax - (uintMax % supplyInitialFragment);

1399 gonsPerFragment = gonsTotal.div(supplyTotal);

1400 gonSwapThreshold = gonsTotal.div(10000).mul(10);

1401

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1398

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1397 supplyMax = _supplyMax.mul(10**5);

1398 gonsTotal = uintMax - (uintMax % supplyInitialFragment);

1399 gonsPerFragment = gonsTotal.div(supplyTotal);

1400 gonSwapThreshold = gonsTotal.div(10000).mul(10);

1401

1402

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 1398

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1397 supplyMax = _supplyMax.mul(10**5);

1398 gonsTotal = uintMax - (uintMax % supplyInitialFragment);

1399 gonsPerFragment = gonsTotal.div(supplyTotal);

1400 gonSwapThreshold = gonsTotal.div(10000).mul(10);

1401

1402

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1518

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1517

1518 uint256 deltaTimeFromInit = block.timestamp - initRebaseStartTime;

1519 uint256 deltaTime = block.timestamp - lastRebasedTime;

1520 uint256 times = deltaTime.div(15 minutes);

1521 uint256 epoch = times.mul(15);

1522

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1519

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1518 uint256 deltaTimeFromInit = block.timestamp - initRebaseStartTime;

1519 uint256 deltaTime = block.timestamp - lastRebasedTime;

1520 uint256 times = deltaTime.div(15 minutes);

1521 uint256 epoch = times.mul(15);

1522

1523

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1525

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1524 rebaseRate = 2355;

1525 } else if (deltaTimeFromInit >= (365 days) && deltaTimeFromInit < ((15 * 365 days)

/ 10)) {

1526 rebaseRate = 211;

1527 } else if (deltaTimeFromInit >= ((15 * 365 days) / 10) && deltaTimeFromInit < (7 *

365 days)) {

1528 rebaseRate = 14;

1529

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1525

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1524 rebaseRate = 2355;

1525 } else if (deltaTimeFromInit >= (365 days) && deltaTimeFromInit < ((15 * 365 days)

/ 10)) {

1526 rebaseRate = 211;

1527 } else if (deltaTimeFromInit >= ((15 * 365 days) / 10) && deltaTimeFromInit < (7 *

365 days)) {

1528 rebaseRate = 14;

1529

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1527

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1526 rebaseRate = 211;

1527 } else if (deltaTimeFromInit >= ((15 * 365 days) / 10) && deltaTimeFromInit < (7 *

365 days)) {

1528 rebaseRate = 14;

1529 } else if (deltaTimeFromInit >= (7 * 365 days)) {

1530 rebaseRate = 2;

1531

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1527

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1526 rebaseRate = 211;

1527 } else if (deltaTimeFromInit >= ((15 * 365 days) / 10) && deltaTimeFromInit < (7 *

365 days)) {

1528 rebaseRate = 14;

1529 } else if (deltaTimeFromInit >= (7 * 365 days)) {

1530 rebaseRate = 2;

1531

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1527

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1526 rebaseRate = 211;

1527 } else if (deltaTimeFromInit >= ((15 * 365 days) / 10) && deltaTimeFromInit < (7 *

365 days)) {

1528 rebaseRate = 14;

1529 } else if (deltaTimeFromInit >= (7 * 365 days)) {

1530 rebaseRate = 2;

1531

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1529

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1528 rebaseRate = 14;

1529 } else if (deltaTimeFromInit >= (7 * 365 days)) {

1530 rebaseRate = 2;

1531 }

1532

1533

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1533

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1532

1533 for (uint256 i = 0; i < times; i++) {

1534 supplyTotal =

supplyTotal.mul((10**rateDecimals).add(rebaseRate)).div(10**rateDecimals);

1535 }

1536

1537

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1534

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1533 for (uint256 i = 0; i < times; i++) {

1534 supplyTotal =

supplyTotal.mul((10**rateDecimals).add(rebaseRate)).div(10**rateDecimals);

1535 }

1536

1537 gonsPerFragment = gonsTotal.div(supplyTotal);

1538

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1534

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1533 for (uint256 i = 0; i < times; i++) {

1534 supplyTotal =

supplyTotal.mul((10**rateDecimals).add(rebaseRate)).div(10**rateDecimals);

1535 }

1536

1537 gonsPerFragment = gonsTotal.div(supplyTotal);

1538

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1835

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1834 function shouldRebase() internal view returns (bool) {

1835 return autoRebase && (supplyTotal < supplyMax) && _msgSender() != pair && !inSwap

&& block.timestamp >= (lastRebasedTime + 15 minutes);

1836 }

1837

1838 /**

1839

Luzion Protocol | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1842

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1841 function shouldAddLiquidity() internal view returns (bool) {

1842 return autoAddLiquidity && !inSwap && _msgSender() != pair && block.timestamp >=

(lastAddLiquidityTime + 12 hours);

1843 }

1844

1845 /**

1846

Luzion Protocol | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1267

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1266 function removeShareholder(address shareholder) internal {

1267 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length -

1];

1268 shareholderIndexes[shareholders[shareholders.length - 1]] =

shareholderIndexes[shareholder];

1269 shareholders.pop();

1270 }

1271

Luzion Protocol | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1268

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- LuzionProtocol.sol

Locations

1267 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length -

1];

1268 shareholderIndexes[shareholders[shareholders.length - 1]] =

shareholderIndexes[shareholder];

1269 shareholders.pop();

1270 }

1271

1272

Luzion Protocol | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 16

low SEVERITY
The current pragma Solidity directive is ""^0.8.13"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- LuzionProtocol.sol

Locations

15

16 pragma solidity ^0.8.13;

17

18

19 /** LIBRARY / DEPENDENCY **/

20

Luzion Protocol | Security Analysis

SWC-110 | PUBLIC STATE VARIABLE WITH ARRAY TYPE
CAUSING REACHABLE EXCEPTION BY DEFAULT.
LINE 1057

low SEVERITY
The public state variable "shareholders" in "DividendDistributor" contract has type "address[]" and can cause an
exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1056 address public _token;

1057 address[] public shareholders;

1058

1059 mapping(address => uint256) public shareholderIndexes;

1060 mapping(address => uint256) public shareholderClaims;

1061

Luzion Protocol | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1162

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1161 address[] memory path = new address[](2);

1162 path[0] = router.WETH();

1163 path[1] = address(rewardToken);

1164

1165 router.swapExactETHForTokensSupportingFeeOnTransferTokens {

1166

Luzion Protocol | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1163

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1162 path[0] = router.WETH();

1163 path[1] = address(rewardToken);

1164

1165 router.swapExactETHForTokensSupportingFeeOnTransferTokens {

1166 value: _msgValue()

1167

Luzion Protocol | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1194

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1193

1194 if (shouldDistribute(shareholders[currentIndex])) {

1195 distributeDividend(shareholders[currentIndex]);

1196 }

1197

1198

Luzion Protocol | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1195

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1194 if (shouldDistribute(shareholders[currentIndex])) {

1195 distributeDividend(shareholders[currentIndex]);

1196 }

1197

1198 gasUsed = gasUsed.add(gasLeft.sub(gasleft()));

1199

Luzion Protocol | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1267

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1266 function removeShareholder(address shareholder) internal {

1267 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length -

1];

1268 shareholderIndexes[shareholders[shareholders.length - 1]] =

shareholderIndexes[shareholder];

1269 shareholders.pop();

1270 }

1271

Luzion Protocol | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1267

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1266 function removeShareholder(address shareholder) internal {

1267 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length -

1];

1268 shareholderIndexes[shareholders[shareholders.length - 1]] =

shareholderIndexes[shareholder];

1269 shareholders.pop();

1270 }

1271

Luzion Protocol | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1268

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1267 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length -

1];

1268 shareholderIndexes[shareholders[shareholders.length - 1]] =

shareholderIndexes[shareholder];

1269 shareholders.pop();

1270 }

1271

1272

Luzion Protocol | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1600

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1599 address[] memory path = new address[](2);

1600 path[0] = address(this);

1601 path[1] = router.WETH();

1602

1603 router.swapExactTokensForETHSupportingFeeOnTransferTokens(amountToSwap, 0, path,

address(this), block.timestamp);

1604

Luzion Protocol | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1601

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1600 path[0] = address(this);

1601 path[1] = router.WETH();

1602

1603 router.swapExactTokensForETHSupportingFeeOnTransferTokens(amountToSwap, 0, path,

address(this), block.timestamp);

1604

1605

Luzion Protocol | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1642

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1641 address[] memory path = new address[](2);

1642 path[0] = address(this);

1643 path[1] = router.WETH();

1644

1645 uint256 balanceBefore = address(this).balance;

1646

Luzion Protocol | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1643

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1642 path[0] = address(this);

1643 path[1] = router.WETH();

1644

1645 uint256 balanceBefore = address(this).balance;

1646

1647

Luzion Protocol | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1671

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1670 address[] memory path = new address[](2);

1671 path[0] = router.WETH();

1672 path[1] = address(this);

1673

1674 router.swapExactETHForTokensSupportingFeeOnTransferTokens {

1675

Luzion Protocol | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1672

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1671 path[0] = router.WETH();

1672 path[1] = address(this);

1673

1674 router.swapExactETHForTokensSupportingFeeOnTransferTokens {

1675 value: amount

1676

Luzion Protocol | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1901

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1900 function _initializeFeeReceivers(address[4] memory _feeReceiverSettings) internal

{

1901 _setFeeReceivers(_feeReceiverSettings[0], _feeReceiverSettings[1],

_feeReceiverSettings[2], _feeReceiverSettings[3]);

1902 }

1903

1904 /**

1905

Luzion Protocol | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1901

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1900 function _initializeFeeReceivers(address[4] memory _feeReceiverSettings) internal

{

1901 _setFeeReceivers(_feeReceiverSettings[0], _feeReceiverSettings[1],

_feeReceiverSettings[2], _feeReceiverSettings[3]);

1902 }

1903

1904 /**

1905

Luzion Protocol | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1901

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1900 function _initializeFeeReceivers(address[4] memory _feeReceiverSettings) internal

{

1901 _setFeeReceivers(_feeReceiverSettings[0], _feeReceiverSettings[1],

_feeReceiverSettings[2], _feeReceiverSettings[3]);

1902 }

1903

1904 /**

1905

Luzion Protocol | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1901

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- LuzionProtocol.sol

Locations

1900 function _initializeFeeReceivers(address[4] memory _feeReceiverSettings) internal

{

1901 _setFeeReceivers(_feeReceiverSettings[0], _feeReceiverSettings[1],

_feeReceiverSettings[2], _feeReceiverSettings[3]);

1902 }

1903

1904 /**

1905

Luzion Protocol | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Luzion Protocol | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

