oty
ooo
v

Operon Origins
Smart Contract
Audit Report

@ SYSFIXED 02 Dec 2021

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

Operon Origins | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

Operon Origins | Security Analysis

Project name

Token ticker

Blockchain

Operon Origins

ORO

Binance Smart Chain

| Addresses

Contract address

Oxfc4f5a4d1452b8dc6c3cb745db15b29c00812b19

Contract deployer address

Ox4EfD81A57EEC5b6e51d4C26053b0146828bDe11C

| Project Website

https://operonorigins.com/

| Codebase

https://bscscan.com/address/0xfc4f5a4d1452b8dc6c3ch745db15b29¢c00812b194#code

https://operonorigins.com/
https://bscscan.com/address/0xfc4f5a4d1452b8dc6c3cb745db15b29c00812b19#code

@S\"SH}I{ED Operon Origins | Security Analysis

SUMMARY

Operon Origins is the first card-based NFT combat game with an epic art style pushing competitive play-to-earn
GameFi.

| Contract Summary

Documentation Quality
Operon Origins provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

e Standard solidity basecode and rules are already followed by Operon Origins with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 337, 338, 339, 340, 341, 342,
343, 344, 345, 346, 347 and 363.

e SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 804.

@ SYSFIXED Operon Origins | Security Analysis

CONCLUSION

We have audited the Operon Origins project released on December 2021 to discover issues and identify
potential security vulnerabilities in Operon Origins Project. This process is used to find technical issues and
security loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the Operon Origins smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some state
variable visibility is not set, and state variable visibility is not set. It is best practice to set the visibility of state
variables explicitly. The default visibility for "_thisSaleContribution" is internal. Other possible visibility settings
are public and private. A requirement was violated in a nested call, and the call was reverted. Ensure valid
inputs are provided to the nested call (for instance, via passed arguments).

£ SYSFIXED

AUDIT RESULT

Operon Origins | Security Analysis

Untrusted Callee

addresses.

Article Category Description Result
Functions and state variables visibility should be
- SWC-100 . . - ISSUE
Default Visibility set explicitly. Visibility levels should be specified
SWC-108 . FOUND
consciously.
Integer Overflow If unchecked math is used, all math operations
SWC-101 PASS
and Underflow should be safe from overflows and underflows.
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same
Floating Pragma SWC-103 compiler version and flags that they have been PASS
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 . i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.
Check effect interaction pattern should be followed
Reentrancy SWC-107)) PASS
if the code performs recursive call.
Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a ISSUE
Assert Violation N
SWC-123 failing assert statement. FOUND
Deprecated Solidity o)
. SWC-111 Deprecated built-in functions should never be used. PASS
Functions
Delegate call to Delegatecalls should only be allowed to trusted
SWC-112 PASS

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

Operon Origins | Security Analysis

Execution of the code should never be blocked by a specific
contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only once
during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

Typographical
Error

Override control
character

Unused variables

Unexpected Ether
balance

Hash Collisions
Variable

Hardcoded gas
amount

Unencrypted
Private Data

SWC-129

SWC-130

SWC-131
SWC-135

SWC-132

SWC-133

SWC-134

SWC-136

Operon Origins | Security Analysis

A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

Contracts can behave erroneously when they strictly assume
a specific Ether balance.

Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

The transfer() and send() functions forward a fixed amount
of 2300 gas.

It is a common misconception that private type variables
cannot be read.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

@sﬁrmm Operon Origins | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Dec 01 2021 12:59:05 GMT+0000 (Coordinated Universal Time)
Finished Thursday Dec 02 2021 06:23:53 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File OperonOrigins.sol

| Detected Issues

ID Title Severity Status

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-123 REQUIREMENT VIOLATION. low acknowledged

@S\"SH}I{ED Operon Origins | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.

LINE 337

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_whitelistedAddress"
is internal. Other possible visibility settings are public and private.

Source File
- OperonOrigins.sol

Locations

336 /1 Special business use case vari abl es

337 nmappi ng (address => bool) _whitelistedAddress;
338 nmappi ng (address => uint256) _| ocki ngTi neFor Sal e;
339 mappi ng (address => uint256) _recordSal e;

340 mappi ng (address => bool) _addressLocked;

341

@S\"SH}I{ED Operon Origins | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 338

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for “_lockingTimeForSale"
is internal. Other possible visibility settings are public and private.

Source File
- OperonOrigins.sol

Locations

337 mappi ng (address => bool) _whitelistedAddress;
338 nmappi ng (address => uint256) _| ocki ngTi neFor Sal e;
339 nmappi ng (address => uint256) _recordSal e;

340 nmappi ng (address => bool) _addressLocked;

341 mappi ng (address => uint256) _final Sol dAnount ;
342

£ SYSFIXED

Operon Origins | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.

LINE 339

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "_recordSale" is
internal. Other possible visibility settings are public and private.

Source File

- OperonOrigins.sol

Locations
338 mappi ng
339 nappi ng
340 nappi ng
341 mappi ng
342 mappi ng
343

(address
(address
(address
(address
(address

ui nt 256) _| ocki ngTi nmeFor Sal e;

ui nt 256) _recordSal e;
bool) _addresslLocked,;
ui nt 256) _fi nal Sol dAnount ;
mappi ng(ui nt 256 => bool))

reEntrance;

£ SYSFIXED

Operon Origins | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.

LINE 340

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "_addressLocked" is

internal. Other possible visibility settings are public and private.

Source File

- OperonOrigins.sol

Locations
339 mappi ng
340 nappi ng
341 nappi ng
342 mappi ng
343 mappi ng
344

(address
(address
(address
(address
(address

ui nt 256) _recordSal e;

bool) _addresslLocked,;

ui nt 256) _fi nal Sol dAnount ;

mappi ng(ui nt 256 => bool)) reEntrance;
ui nt 256) speci al AddBal ;

@S\"SH}I{ED Operon Origins | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 341

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_finalSoldAmount" is
internal. Other possible visibility settings are public and private.

Source File
- OperonOrigins.sol

Locations

340 mappi ng (address => bool) _addressLocked;

341 nmappi ng (address => uint256) _final Sol dAnount;

342 nmappi ng (address => mappi ng(ui nt 256 => bool)) reEntrance;
343 nmappi ng (address => ui nt256) speci al AddBal ;

344 mappi ng (address => uint256) _contributi onBUSD;

345

£ SYSFIXED

Operon Origins | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.

LINE 342

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "reEntrance" is
internal. Other possible visibility settings are public and private.

Source File

- OperonOrigins.sol

Locations
341 mappi ng
342 nappi ng
343 nappi ng
344 mappi ng
345 mappi ng
346

(address
(address
(address
(address
(address

ui nt 256) _fi nal Sol dAnount ;

mappi ng(ui nt 256 => bool)) reEntrance;

ui nt 256) speci al AddBal ;

ui nt 256) _contri buti onBUSD;

mappi ng(ui nt 256 => ui nt 256)) _cl ai mredByUser;

£ SYSFIXED

Operon Origins | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.

LINE 343

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "specialAddBal" is

internal. Other possible visibility settings are public and private.

Source File

- OperonOrigins.sol

Locations
342 mappi ng
343 nappi ng
344 mappi ng
345 nappi ng
346 mappi ng
347

(address => mappi ng(ui nt 256 => bool)) reEntrance;

(address => uint256) special AddBal ;

(address => uint256) _contributi onBUSD;

(address => mappi ng(ui nt 256 => ui nt 256)) _cl ai nedByUser;
(address =>mappi ng(ui nt 256 => ui nt256)) _thisSal eContri buti on;

@‘S\FSHREU Operon Origins | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 344

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_contributionBUSD" is
internal. Other possible visibility settings are public and private.

Source File
- OperonOrigins.sol

Locations

343 mappi ng (address => uint 256) speci al AddBal ;

344 nmappi ng (address => uint256) _contri buti onBUSD;

345 nmappi ng (address => mappi ng(ui nt 256 => ui nt 256)) _cl ai nedByUser ;

346 mappi ng (address =>mappi ng(ui nt 256 => ui nt256)) _thi sSal eContri buti on;
347 mappi ng (address => uint) _nmultiplier;

348

@S\"SH}I{ED Operon Origins | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 345

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for “_claimedByUser" is
internal. Other possible visibility settings are public and private.

Source File
- OperonOrigins.sol

Locations

344 mappi ng (address => uint256) _contributi onBUSD;

345 nmappi ng (address => mappi ng(ui nt 256 => ui nt256)) _cl ai nedByUser;

346 nmappi ng (address =>mappi ng(ui nt 256 => ui nt256)) _thisSal eContri buti on;
347 mappi ng (address => uint) _nmultiplier;

348

349

@S\"SH}I{ED Operon Origins | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.

LINE 346

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for
"_thisSaleContribution" is internal. Other possible visibility settings are public and private.

Source File
- OperonOrigins.sol

Locations
345 mappi ng (address => mappi ng(ui nt 256 => ui nt 256)) _cl ai mredByUser;
346 nmappi ng (address =>mappi ng(ui nt 256 => ui nt256)) _thisSal eContri bution;
347 nmappi ng (address => uint) _nmultiplier;
348
349 address[] private _whitelistedUser Addresses;

350

@S\"SH}I{ED Operon Origins | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 347

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_multiplier" is internal.
Other possible visibility settings are public and private.

Source File
- OperonOrigins.sol

Locations

346 nmappi ng (address =>mappi ng(ui nt 256 => ui nt256)) thisSal eContri buti on;
347 nmappi ng (address => uint) _nultiplier;

348

349 address[] private _whitelistedUser Addresses;

350 ui nt 256 private sal eStartTi ne;

351

@‘S\FSHREU Operon Origins | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.

LINE 363

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "whitelistFlag" is
internal. Other possible visibility settings are public and private.

Source File
- OperonOrigins.sol

Locations
362 ui nt 256 public BUSDPri ce;
363 bool whitelistFlag = true;
364 address private Reserve = 0xc6BBbh38478861f f 1eA4A729e79DAf f a20ad5A18E;
365 address private Marketing = Ox7cF44E816070f 4E3471F770dF5E4Bde8ef B9a0B4;
366 address private Team = 0xa67A04b3a6f BF6771c301CcE85b52BbA9e4F504B;

367

@S\"SH}I{ED Operon Origins | Security Analysis

SWC-123 | REQUIREMENT VIOLATION.
LINE 804

low SEVERITY
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments).

Source File
- OperonOrigins.sol

Locations

803 i BUSD = | BUSD(_contract Add) ;

804 i BUSD. t ransfer (nsg. sender, _anount);
805 return true;

806

807 }

808

@‘S\"SH}I{ED Operon Origins | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@‘S\"SH}I{ED Operon Origins | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

