
Mashida

Smart Contract
Audit Report

15 Jan 2023

Mashida | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Mashida | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Mashida MSHD BSC

| Addresses

Contract address 0x06CE168FF4Ca760768f42C440d4266BA705E2F21

Contract deployer address 0x5ab868961f4F18C553BdA8CE61cB338E5E1bB300

| Project Website

https://mashida.io/

| Codebase

https://bscscan.com/address/0x06CE168FF4Ca760768f42C440d4266BA705E2F21#contracts

https://mashida.io/
https://bscscan.com/address/0x06CE168FF4Ca760768f42C440d4266BA705E2F21#contracts

Mashida | Security Analysis

SUMMARY

MASHIDA is a BEP-20 token built on the BNB blockchain , it is a Crypto Token and a Web3 Platform that
contains a Virtual world, Social and Game application features that are interconnected, here people can
interact virtually, work, play, and meet based on activity and interaction, they can transact peer to peer.
Application owners and users are referred to as the Mashida Army, with NFT as profile identities and assets on
the platform, $MSHD will be required for buying and selling non-fungible tokens (NFTs).

| Contract Summary

Documentation Quality

Mashida provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standart solidity basecode and rules are already followed with Mashida with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 44.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 114, 115, 116, 117, 118, 119, 120, 155, 163, 170, 189, 191, 200 and 201.

Mashida | Security Analysis

CONCLUSION

We have audited the Mashida project which has released on January 2023 to discover issues and identify
potential security vulnerabilities in Mashida Project. This process is used to find technical issues and security
loopholes that find some common issues in the code.

The security audit report produced satisfactory results with low-risk issues.

The most common issue found in writing code on contracts that do not pose a big risk, writing on contracts is
close to the standard of writing contracts in general. The low-level issues found are some arithmetic operation
issues and a state variable visibility is not set. It is best practice to set the visibility of state variables explicitly.

Mashida | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Mashida | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

Mashida | Security Analysis

SMART CONTRACT ANALYSIS

Started Sat Jan 14 2023 21:27:40 GMT+0000 (Coordinated Universal Time)

Finished Sun Jan 15 2023 00:21:20 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Mashida.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

Mashida | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 114

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Mashida.sol

Locations

113 //split TGE

114 _mint(PRESALE, 100000000 * 10 ** uint256(_decimals)); //1%

115 _mint(LIQUIDITY_PROVISION, 3200000000 * 10 ** uint256(_decimals)); //32%

116 _mint(ECOSYSTEM, 2000000000 * 10 ** uint256(_decimals)); //20%

117 _mint(TEAM, 1000000000 * 10 ** uint256(_decimals)); //10%

118

Mashida | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 115

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Mashida.sol

Locations

114 _mint(PRESALE, 100000000 * 10 ** uint256(_decimals)); //1%

115 _mint(LIQUIDITY_PROVISION, 3200000000 * 10 ** uint256(_decimals)); //32%

116 _mint(ECOSYSTEM, 2000000000 * 10 ** uint256(_decimals)); //20%

117 _mint(TEAM, 1000000000 * 10 ** uint256(_decimals)); //10%

118 _mint(MARKETING, 1500000000 * 10 ** uint256(_decimals)); //15%

119

Mashida | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 116

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Mashida.sol

Locations

115 _mint(LIQUIDITY_PROVISION, 3200000000 * 10 ** uint256(_decimals)); //32%

116 _mint(ECOSYSTEM, 2000000000 * 10 ** uint256(_decimals)); //20%

117 _mint(TEAM, 1000000000 * 10 ** uint256(_decimals)); //10%

118 _mint(MARKETING, 1500000000 * 10 ** uint256(_decimals)); //15%

119 _mint(PRODUCT_DEVELOPMENT, 1500000000 * 10 ** uint256(_decimals)); //15%

120

Mashida | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 117

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Mashida.sol

Locations

116 _mint(ECOSYSTEM, 2000000000 * 10 ** uint256(_decimals)); //20%

117 _mint(TEAM, 1000000000 * 10 ** uint256(_decimals)); //10%

118 _mint(MARKETING, 1500000000 * 10 ** uint256(_decimals)); //15%

119 _mint(PRODUCT_DEVELOPMENT, 1500000000 * 10 ** uint256(_decimals)); //15%

120 _mint(TREASURY, 700000000 * 10 ** uint256(_decimals)); //7%

121

Mashida | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 118

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Mashida.sol

Locations

117 _mint(TEAM, 1000000000 * 10 ** uint256(_decimals)); //10%

118 _mint(MARKETING, 1500000000 * 10 ** uint256(_decimals)); //15%

119 _mint(PRODUCT_DEVELOPMENT, 1500000000 * 10 ** uint256(_decimals)); //15%

120 _mint(TREASURY, 700000000 * 10 ** uint256(_decimals)); //7%

121 pinkAntiBot = IPinkAntiBot(pinkAntiBot_);

122

Mashida | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 119

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Mashida.sol

Locations

118 _mint(MARKETING, 1500000000 * 10 ** uint256(_decimals)); //15%

119 _mint(PRODUCT_DEVELOPMENT, 1500000000 * 10 ** uint256(_decimals)); //15%

120 _mint(TREASURY, 700000000 * 10 ** uint256(_decimals)); //7%

121 pinkAntiBot = IPinkAntiBot(pinkAntiBot_);

122 pinkAntiBot.setTokenOwner(msg.sender);

123

Mashida | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 120

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Mashida.sol

Locations

119 _mint(PRODUCT_DEVELOPMENT, 1500000000 * 10 ** uint256(_decimals)); //15%

120 _mint(TREASURY, 700000000 * 10 ** uint256(_decimals)); //7%

121 pinkAntiBot = IPinkAntiBot(pinkAntiBot_);

122 pinkAntiBot.setTokenOwner(msg.sender);

123 antiBotEnabled = true;

124

Mashida | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 155

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Mashida.sol

Locations

154 if(_allowances[sender][_msgSender()] != ~uint(0)){

155 _allowances[sender][_msgSender()] = _allowances[sender][_msgSender()]-(amount);

156 }

157

158 _transfer(sender, recipient, amount);

159

Mashida | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 163

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Mashida.sol

Locations

162 function increaseAllowance(address spender, uint256 addedValue) public virtual

returns (bool) {

163 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

164 return true;

165 }

166 function decreaseAllowance(address spender, uint256 subtractedValue) public virtual

returns (bool) {

167

Mashida | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 170

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Mashida.sol

Locations

169 unchecked {

170 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

171 }

172 return true;

173 }

174

Mashida | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 189

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Mashida.sol

Locations

188 }

189 _balances[sender] = senderBalance - amount;

190

191 _balances[recipient] += amount;

192 emit Transfer(sender, recipient, amount);

193

Mashida | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 191

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Mashida.sol

Locations

190

191 _balances[recipient] += amount;

192 emit Transfer(sender, recipient, amount);

193 return true;

194 }

195

Mashida | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 200

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Mashida.sol

Locations

199

200 _totalSupply += amount;

201 _balances[account] += amount;

202 emit Transfer(address(0), account, amount);

203 }

204

Mashida | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 201

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Mashida.sol

Locations

200 _totalSupply += amount;

201 _balances[account] += amount;

202 emit Transfer(address(0), account, amount);

203 }

204

205

Mashida | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 44

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_creator" is internal.
Other possible visibility settings are public and private.

Source File
- Mashida.sol

Locations

43 address public _owner;

44 address immutable _creator;

45

46 event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

47 constructor() {

48

Mashida | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Mashida | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

