
CALO

Smart Contract
Audit Report

19 Dec 2021

CALO | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

CALO | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

CALO CALO Binance Smart Chain

| Addresses

Contract address 0xb6b91269413b6b99242b1c0bc611031529999999

Contract deployer address 0xad80314c566Be4Bacbb3992F844faE914D9Fd31d

| Project Website

https://calo.run/

| Codebase

https://bscscan.com/address/0xb6b91269413b6b99242b1c0bc611031529999999#code

https://calo.run/
https://bscscan.com/address/0xb6b91269413b6b99242b1c0bc611031529999999#code

CALO | Security Analysis

SUMMARY

Calo is a healthy application based on blockchain technology. Work out every day, burn your calories,
participate in challenges, and earn money. CALO Token is a blockchain-based platform crypto currency with
limited supply. CALO Token is the main currency of the Calo ecosystem.

| Contract Summary

Documentation Quality

CALO provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by CALO with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 34, 50, 67, 68, 83, 97, 111, 128, 143, 144, 162, 179, 201, 225, 249, 452, 543, 543, 927, 930, 943, 946,
959, 962, 998, 1001, 1022, 1025, 1400, 1400, 1400 and 1400.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 470.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 928, 931, 944, 947, 960, 963, 999, 1002, 1023 and 1026.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 537, 538, 539,
540 and 541.

CALO | Security Analysis

CONCLUSION

We have audited the CALO project released on December 2021 to discover issues and identify potential
security vulnerabilities in CALO Project. This process is used to find technical issues and security loopholes
which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the CALO smart contract code do not pose a considerable risk. The writing of the contract
is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, x.origin as a part of authorization control and out-of-bounds array
access which the index access expression can cause an exception in case of the use of an invalid array index
value. Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you know what you are doing. tx.origin is a global variable in Solidity that returns the
account's address that sent the transaction. Using the variable for authorization could make a contract
vulnerable if an authorized account calls into a malicious contract. A call could be made to the vulnerable
contract that passes the authorization check since tx.origin returns the original sender of the transaction,
which in this case is the authorized account. tx.origin should not be used for authorization. Use msg.sender
instead.

CALO | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

CALO | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

CALO | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

CALO | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Dec 18 2021 21:44:22 GMT+0000 (Coordinated Universal Time)

Finished Sunday Dec 19 2021 00:24:14 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Token.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 34

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

33 {

34 uint256 c = a + b;

35 if (c < a) return (false, 0);

36 return (true, c);

37 }

38

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 50

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

49 if (b > a) return (false, 0);

50 return (true, a - b);

51 }

52

53 /**

54

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 67

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

66 if (a == 0) return (true, 0);

67 uint256 c = a * b;

68 if (c / a != b) return (false, 0);

69 return (true, c);

70 }

71

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 68

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

67 uint256 c = a * b;

68 if (c / a != b) return (false, 0);

69 return (true, c);

70 }

71

72

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 83

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

82 if (b == 0) return (false, 0);

83 return (true, a / b);

84 }

85

86 /**

87

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 97

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

96 if (b == 0) return (false, 0);

97 return (true, a % b);

98 }

99

100 /**

101

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 111

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

110 function add(uint256 a, uint256 b) internal pure returns (uint256) {

111 uint256 c = a + b;

112 require(c >= a, "SafeMath: addition overflow");

113 return c;

114 }

115

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 128

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

127 require(b <= a, "SafeMath: subtraction overflow");

128 return a - b;

129 }

130

131 /**

132

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 143

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

142 if (a == 0) return 0;

143 uint256 c = a * b;

144 require(c / a == b, "SafeMath: multiplication overflow");

145 return c;

146 }

147

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 144

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

143 uint256 c = a * b;

144 require(c / a == b, "SafeMath: multiplication overflow");

145 return c;

146 }

147

148

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 162

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

161 require(b > 0, "SafeMath: division by zero");

162 return a / b;

163 }

164

165 /**

166

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 179

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

178 require(b > 0, "SafeMath: modulo by zero");

179 return a % b;

180 }

181

182 /**

183

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 201

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

200 require(b <= a, errorMessage);

201 return a - b;

202 }

203

204 /**

205

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 225

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

224 require(b > 0, errorMessage);

225 return a / b;

226 }

227

228 /**

229

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 249

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

248 require(b > 0, errorMessage);

249 return a % b;

250 }

251 }

252

253

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 452

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

451 _owner = address(0);

452 _lockTime = block.timestamp + time;

453 emit OwnershipTransferred(_owner, address(0));

454 }

455

456

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 543

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

542 _mintable = true;

543 _numTokensSellToAddToLiquidity= (_pamount*1) / 10000; /** 0,01 % total supply */

544 }

545

546 /**

547

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 543

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

542 _mintable = true;

543 _numTokensSellToAddToLiquidity= (_pamount*1) / 10000; /** 0,01 % total supply */

544 }

545

546 /**

547

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 927

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

926) public onlyOwner {

927 for (uint256 index; index < newWhiteList.length; index++) {

928 whiteListSender[newWhiteList[index]] = true;

929 }

930 for (uint256 index; index < removedWhiteList.length; index++) {

931

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 930

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

929 }

930 for (uint256 index; index < removedWhiteList.length; index++) {

931 whiteListSender[removedWhiteList[index]] = false;

932 }

933 }

934

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 943

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

942) public onlyOwner {

943 for (uint256 index; index < newWhiteList.length; index++) {

944 whiteListReceiver[newWhiteList[index]] = true;

945 }

946 for (uint256 index; index < removedWhiteList.length; index++) {

947

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 946

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

945 }

946 for (uint256 index; index < removedWhiteList.length; index++) {

947 whiteListReceiver[removedWhiteList[index]] = false;

948 }

949 }

950

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 959

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

958) public onlyOwner {

959 for (uint256 index; index < newWhiteList.length; index++) {

960 blackList[newWhiteList[index]] = true;

961 }

962 for (uint256 index; index < removedWhiteList.length; index++) {

963

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 962

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

961 }

962 for (uint256 index; index < removedWhiteList.length; index++) {

963 blackList[removedWhiteList[index]] = false;

964 }

965 }

966

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 998

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

997) public onlyOwner {

998 for (uint256 index; index < newWhiteList.length; index++) {

999 whiteListBot[newWhiteList[index]] = true;

1000 }

1001 for (uint256 index; index < removedWhiteList.length; index++) {

1002

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1001

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1000 }

1001 for (uint256 index; index < removedWhiteList.length; index++) {

1002 whiteListBot[removedWhiteList[index]] = false;

1003 }

1004 }

1005

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1022

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1021) public onlyOwner {

1022 for (uint256 index; index < newWhiteList.length; index++) {

1023 whiteListPool[newWhiteList[index]] = true;

1024 }

1025 for (uint256 index; index < removedWhiteList.length; index++) {

1026

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1025

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1024 }

1025 for (uint256 index; index < removedWhiteList.length; index++) {

1026 whiteListPool[removedWhiteList[index]] = false;

1027 }

1028 }

1029

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1400

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1399

1400 uint256 public maxSupply = 500 * 10**6 * 10**18;

1401

1402 IUniswapV2Router02 public immutable uniswapV2Router;

1403 address public uniswapV2Pair;

1404

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1400

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1399

1400 uint256 public maxSupply = 500 * 10**6 * 10**18;

1401

1402 IUniswapV2Router02 public immutable uniswapV2Router;

1403 address public uniswapV2Pair;

1404

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1400

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1399

1400 uint256 public maxSupply = 500 * 10**6 * 10**18;

1401

1402 IUniswapV2Router02 public immutable uniswapV2Router;

1403 address public uniswapV2Pair;

1404

CALO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1400

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1399

1400 uint256 public maxSupply = 500 * 10**6 * 10**18;

1401

1402 IUniswapV2Router02 public immutable uniswapV2Router;

1403 address public uniswapV2Pair;

1404

CALO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 470

low SEVERITY
The current pragma Solidity directive is ""^0.7.4"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

469

470 pragma solidity ^0.7.4;

471

472 /**

473 * @dev Implementation of the {IERC20} interface.

474

CALO | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 537

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- Token.sol

Locations

536 _decimals = _pdecimals;

537 _feeWallet = tx.origin;

538 _mint(tx.origin, _pamount);

539 whiteListSender[tx.origin] = true;

540 whiteListReceiver[tx.origin] = true;

541

CALO | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 538

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- Token.sol

Locations

537 _feeWallet = tx.origin;

538 _mint(tx.origin, _pamount);

539 whiteListSender[tx.origin] = true;

540 whiteListReceiver[tx.origin] = true;

541 whiteListBot[tx.origin] = true;

542

CALO | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 539

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- Token.sol

Locations

538 _mint(tx.origin, _pamount);

539 whiteListSender[tx.origin] = true;

540 whiteListReceiver[tx.origin] = true;

541 whiteListBot[tx.origin] = true;

542 _mintable = true;

543

CALO | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 540

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- Token.sol

Locations

539 whiteListSender[tx.origin] = true;

540 whiteListReceiver[tx.origin] = true;

541 whiteListBot[tx.origin] = true;

542 _mintable = true;

543 _numTokensSellToAddToLiquidity= (_pamount*1) / 10000; /** 0,01 % total supply */

544

CALO | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 541

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- Token.sol

Locations

540 whiteListReceiver[tx.origin] = true;

541 whiteListBot[tx.origin] = true;

542 _mintable = true;

543 _numTokensSellToAddToLiquidity= (_pamount*1) / 10000; /** 0,01 % total supply */

544 }

545

CALO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 928

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

927 for (uint256 index; index < newWhiteList.length; index++) {

928 whiteListSender[newWhiteList[index]] = true;

929 }

930 for (uint256 index; index < removedWhiteList.length; index++) {

931 whiteListSender[removedWhiteList[index]] = false;

932

CALO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 931

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

930 for (uint256 index; index < removedWhiteList.length; index++) {

931 whiteListSender[removedWhiteList[index]] = false;

932 }

933 }

934

935

CALO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 944

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

943 for (uint256 index; index < newWhiteList.length; index++) {

944 whiteListReceiver[newWhiteList[index]] = true;

945 }

946 for (uint256 index; index < removedWhiteList.length; index++) {

947 whiteListReceiver[removedWhiteList[index]] = false;

948

CALO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 947

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

946 for (uint256 index; index < removedWhiteList.length; index++) {

947 whiteListReceiver[removedWhiteList[index]] = false;

948 }

949 }

950

951

CALO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 960

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

959 for (uint256 index; index < newWhiteList.length; index++) {

960 blackList[newWhiteList[index]] = true;

961 }

962 for (uint256 index; index < removedWhiteList.length; index++) {

963 blackList[removedWhiteList[index]] = false;

964

CALO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 963

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

962 for (uint256 index; index < removedWhiteList.length; index++) {

963 blackList[removedWhiteList[index]] = false;

964 }

965 }

966

967

CALO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 999

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

998 for (uint256 index; index < newWhiteList.length; index++) {

999 whiteListBot[newWhiteList[index]] = true;

1000 }

1001 for (uint256 index; index < removedWhiteList.length; index++) {

1002 whiteListBot[removedWhiteList[index]] = false;

1003

CALO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1002

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1001 for (uint256 index; index < removedWhiteList.length; index++) {

1002 whiteListBot[removedWhiteList[index]] = false;

1003 }

1004 }

1005

1006

CALO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1023

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1022 for (uint256 index; index < newWhiteList.length; index++) {

1023 whiteListPool[newWhiteList[index]] = true;

1024 }

1025 for (uint256 index; index < removedWhiteList.length; index++) {

1026 whiteListPool[removedWhiteList[index]] = false;

1027

CALO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1026

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1025 for (uint256 index; index < removedWhiteList.length; index++) {

1026 whiteListPool[removedWhiteList[index]] = false;

1027 }

1028 }

1029

1030

CALO | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

CALO | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

