
SCARAB

Smart Contract
Audit Report

18 Dec 2021

SCARAB | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

SCARAB | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

SCARAB SCARAB Fantom

| Addresses

Contract address 0x2e79205648b85485731cfe3025d66cf2d3b059c4

Contract deployer address 0x7abc0e9130c0B172f18Da62b02Eb65D136BD76E3

| Project Website

https://twitter.com/Scarab_Finance

| Codebase

https://ftmscan.com/address/0x2e79205648b85485731cfe3025d66cf2d3b059c4#code

https://twitter.com/Scarab_Finance
https://ftmscan.com/address/0x2e79205648b85485731cfe3025d66cf2d3b059c4#code

SCARAB | Security Analysis

SUMMARY

Scarab.Finance is a brand new Tomb finance fork on the Fantom Opera network.

| Contract Summary

Documentation Quality

SCARAB provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by SCARAB with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 136, 148, 161, 162, 173, 183, 197, 214, 229, 230, 248, 265, 283, 303, 323, 710, 710, 710, 710, 710,
710, 710, 710, 746, 778, 801, 802, 837, 873, 1092, 1095, 1122 and 1092.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 5, 33, 114,
332, 640, 684, 882 and 889.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1041, 1042, 1092, 1095, 1097, 1104, 1123, 1124, 1125 and 1126.

SCARAB | Security Analysis

CONCLUSION

We have audited the SCARAB project released on December 2021 to discover issues and identify potential
security vulnerabilities in SCARAB Project. This process is used to find technical issues and security loopholes
which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the SCARAB smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, floating pragmas set on several lines, a public state variable with array type causing
reachable exception by default and out of bounds array access which the index access expression can cause
an exception in case of the use of an invalid array index value.

SCARAB | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

SCARAB | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

SCARAB | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

SCARAB | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Dec 17 2021 14:15:58 GMT+0000 (Coordinated Universal Time)

Finished Saturday Dec 18 2021 06:52:49 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Scarab.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "--" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110
PUBLIC STATE VARIABLE WITH ARRAY TYPE CAUSING REACHABLE
EXCEPTION BY DEFAULT.

low acknowledged

SWC-110
PUBLIC STATE VARIABLE WITH ARRAY TYPE CAUSING REACHABLE
EXCEPTION BY DEFAULT.

low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 136

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

135 function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {

136 uint256 c = a + b;

137 if (c < a) return (false, 0);

138 return (true, c);

139 }

140

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 148

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

147 if (b > a) return (false, 0);

148 return (true, a - b);

149 }

150

151 /**

152

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 161

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

160 if (a == 0) return (true, 0);

161 uint256 c = a * b;

162 if (c / a != b) return (false, 0);

163 return (true, c);

164 }

165

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 162

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

161 uint256 c = a * b;

162 if (c / a != b) return (false, 0);

163 return (true, c);

164 }

165

166

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 173

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

172 if (b == 0) return (false, 0);

173 return (true, a / b);

174 }

175

176 /**

177

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 183

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

182 if (b == 0) return (false, 0);

183 return (true, a % b);

184 }

185

186 /**

187

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 197

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

196 function add(uint256 a, uint256 b) internal pure returns (uint256) {

197 uint256 c = a + b;

198 require(c >= a, "SafeMath: addition overflow");

199 return c;

200 }

201

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 214

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

213 require(b <= a, "SafeMath: subtraction overflow");

214 return a - b;

215 }

216

217 /**

218

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 229

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

228 if (a == 0) return 0;

229 uint256 c = a * b;

230 require(c / a == b, "SafeMath: multiplication overflow");

231 return c;

232 }

233

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 230

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

229 uint256 c = a * b;

230 require(c / a == b, "SafeMath: multiplication overflow");

231 return c;

232 }

233

234

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 248

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

247 require(b > 0, "SafeMath: division by zero");

248 return a / b;

249 }

250

251 /**

252

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 265

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

264 require(b > 0, "SafeMath: modulo by zero");

265 return a % b;

266 }

267

268 /**

269

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 283

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

282 require(b <= a, errorMessage);

283 return a - b;

284 }

285

286 /**

287

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 303

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

302 require(b > 0, errorMessage);

303 return a / b;

304 }

305

306 /**

307

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 323

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

322 require(b > 0, errorMessage);

323 return a % b;

324 }

325 }

326

327

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 710

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

709 // (a + b) / 2 can overflow, so we distribute

710 return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);

711 }

712 }

713

714

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 710

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

709 // (a + b) / 2 can overflow, so we distribute

710 return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);

711 }

712 }

713

714

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 710

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

709 // (a + b) / 2 can overflow, so we distribute

710 return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);

711 }

712 }

713

714

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 710

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

709 // (a + b) / 2 can overflow, so we distribute

710 return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);

711 }

712 }

713

714

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 710

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

709 // (a + b) / 2 can overflow, so we distribute

710 return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);

711 }

712 }

713

714

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 710

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

709 // (a + b) / 2 can overflow, so we distribute

710 return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);

711 }

712 }

713

714

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 710

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

709 // (a + b) / 2 can overflow, so we distribute

710 return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);

711 }

712 }

713

714

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 710

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

709 // (a + b) / 2 can overflow, so we distribute

710 return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);

711 }

712 }

713

714

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 746

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

745 function add(uint8 a, uint8 b) internal pure returns (uint8) {

746 uint8 c = a + b;

747 require(c >= a, "SafeMath: addition overflow");

748

749 return c;

750

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 778

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

777 require(b <= a, errorMessage);

778 uint8 c = a - b;

779

780 return c;

781 }

782

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 801

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

800

801 uint8 c = a * b;

802 require(c / a == b, "SafeMath: multiplication overflow");

803

804 return c;

805

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 802

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

801 uint8 c = a * b;

802 require(c / a == b, "SafeMath: multiplication overflow");

803

804 return c;

805 }

806

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 837

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

836 require(b > 0, errorMessage);

837 uint8 c = a / b;

838 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

839

840 return c;

841

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 873

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

872 require(b != 0, errorMessage);

873 return a % b;

874 }

875 }

876

877

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1092

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

1091 if (_index > 0) {

1092 require(_value > taxTiersTwaps[_index - 1]);

1093 }

1094 if (_index < getTaxTiersTwapsCount().sub(1)) {

1095 require(_value < taxTiersTwaps[_index + 1]);

1096

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1095

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

1094 if (_index < getTaxTiersTwapsCount().sub(1)) {

1095 require(_value < taxTiersTwaps[_index + 1]);

1096 }

1097 taxTiersTwaps[_index] = _value;

1098 return true;

1099

SCARAB | Security Analysis

SWC-101 | ARITHMETIC OPERATION "--" DISCOVERED
LINE 1122

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

1121 if (autoCalculateTax) {

1122 for (uint8 tierId = uint8(getTaxTiersTwapsCount()).sub(1); tierId >= 0; --tierId)

{

1123 if (_tombPrice >= taxTiersTwaps[tierId]) {

1124 require(taxTiersRates[tierId] < 10000, "tax equal or bigger to 100%");

1125 taxRate = taxTiersRates[tierId];

1126

SCARAB | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1092

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Scarab.sol

Locations

1091 if (_index > 0) {

1092 require(_value > taxTiersTwaps[_index - 1]);

1093 }

1094 if (_index < getTaxTiersTwapsCount().sub(1)) {

1095 require(_value < taxTiersTwaps[_index + 1]);

1096

SCARAB | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 5

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Scarab.sol

Locations

4

5 pragma solidity >=0.6.0 <0.8.0;

6

7 /*

8 * @dev Provides information about the current execution context, including the

9

SCARAB | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 33

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Scarab.sol

Locations

32

33 pragma solidity >=0.6.0 <0.8.0;

34

35 /**

36 * @dev Interface of the ERC20 standard as defined in the EIP.

37

SCARAB | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 114

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Scarab.sol

Locations

113

114 pragma solidity >=0.6.0 <0.8.0;

115

116 /**

117 * @dev Wrappers over Solidity's arithmetic operations with added overflow

118

SCARAB | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 332

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Scarab.sol

Locations

331

332 pragma solidity >=0.6.0 <0.8.0;

333

334

335

336

SCARAB | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 640

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Scarab.sol

Locations

639

640 pragma solidity >=0.6.0 <0.8.0;

641

642

643 /**

644

SCARAB | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 684

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Scarab.sol

Locations

683

684 pragma solidity >=0.6.0 <0.8.0;

685

686 /**

687 * @dev Standard math utilities missing in the Solidity language.

688

SCARAB | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 882

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Scarab.sol

Locations

881

882 pragma solidity >=0.6.0 <0.8.0;

883

884

885 // File @openzeppelin/contracts/access/Ownable.sol@v3.4.2

886

SCARAB | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 889

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Scarab.sol

Locations

888

889 pragma solidity >=0.6.0 <0.8.0;

890

891 /**

892 * @dev Contract module which provides a basic access control mechanism, where

893

SCARAB | Security Analysis

SWC-110 | PUBLIC STATE VARIABLE WITH ARRAY TYPE
CAUSING REACHABLE EXCEPTION BY DEFAULT.
LINE 1041

low SEVERITY
The public state variable "taxTiersTwaps" in "Scarab" contract has type "uint256[]" and can cause an exception
in case of use of invalid array index value.

Source File
- Scarab.sol

Locations

1040 // Tax Tiers

1041 uint256[] public taxTiersTwaps = [0, 5e17, 6e17, 7e17, 8e17, 9e17, 9.5e17, 1e18,

1.05e18, 1.10e18, 1.20e18, 1.30e18, 1.40e18, 1.50e18];

1042 uint256[] public taxTiersRates = [2000, 1900, 1800, 1700, 1600, 1500, 1500, 1500,

1500, 1400, 900, 400, 200, 100];

1043

1044 // Sender addresses excluded from Tax

1045

SCARAB | Security Analysis

SWC-110 | PUBLIC STATE VARIABLE WITH ARRAY TYPE
CAUSING REACHABLE EXCEPTION BY DEFAULT.
LINE 1042

low SEVERITY
The public state variable "taxTiersRates" in "Scarab" contract has type "uint256[]" and can cause an exception
in case of use of invalid array index value.

Source File
- Scarab.sol

Locations

1041 uint256[] public taxTiersTwaps = [0, 5e17, 6e17, 7e17, 8e17, 9e17, 9.5e17, 1e18,

1.05e18, 1.10e18, 1.20e18, 1.30e18, 1.40e18, 1.50e18];

1042 uint256[] public taxTiersRates = [2000, 1900, 1800, 1700, 1600, 1500, 1500, 1500,

1500, 1400, 900, 400, 200, 100];

1043

1044 // Sender addresses excluded from Tax

1045 mapping(address => bool) public excludedAddresses;

1046

SCARAB | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1092

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Scarab.sol

Locations

1091 if (_index > 0) {

1092 require(_value > taxTiersTwaps[_index - 1]);

1093 }

1094 if (_index < getTaxTiersTwapsCount().sub(1)) {

1095 require(_value < taxTiersTwaps[_index + 1]);

1096

SCARAB | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1095

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Scarab.sol

Locations

1094 if (_index < getTaxTiersTwapsCount().sub(1)) {

1095 require(_value < taxTiersTwaps[_index + 1]);

1096 }

1097 taxTiersTwaps[_index] = _value;

1098 return true;

1099

SCARAB | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1097

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Scarab.sol

Locations

1096 }

1097 taxTiersTwaps[_index] = _value;

1098 return true;

1099 }

1100

1101

SCARAB | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1104

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Scarab.sol

Locations

1103 require(_index < getTaxTiersRatesCount(), "Index has to lower than count of tax

tiers");

1104 taxTiersRates[_index] = _value;

1105 return true;

1106 }

1107

1108

SCARAB | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1123

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Scarab.sol

Locations

1122 for (uint8 tierId = uint8(getTaxTiersTwapsCount()).sub(1); tierId >= 0; --tierId)

{

1123 if (_tombPrice >= taxTiersTwaps[tierId]) {

1124 require(taxTiersRates[tierId] < 10000, "tax equal or bigger to 100%");

1125 taxRate = taxTiersRates[tierId];

1126 return taxTiersRates[tierId];

1127

SCARAB | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1124

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Scarab.sol

Locations

1123 if (_tombPrice >= taxTiersTwaps[tierId]) {

1124 require(taxTiersRates[tierId] < 10000, "tax equal or bigger to 100%");

1125 taxRate = taxTiersRates[tierId];

1126 return taxTiersRates[tierId];

1127 }

1128

SCARAB | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1125

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Scarab.sol

Locations

1124 require(taxTiersRates[tierId] < 10000, "tax equal or bigger to 100%");

1125 taxRate = taxTiersRates[tierId];

1126 return taxTiersRates[tierId];

1127 }

1128 }

1129

SCARAB | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1126

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Scarab.sol

Locations

1125 taxRate = taxTiersRates[tierId];

1126 return taxTiersRates[tierId];

1127 }

1128 }

1129 }

1130

SCARAB | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

SCARAB | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

