
Elk

Smart Contract
Audit Report

08 Apr 2022

Elk | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Elk | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Elk Elk Binance Smart Chain

| Addresses

Contract address 0xeeeeeb57642040be42185f49c52f7e9b38f8eeee

Contract deployer address 0x6bc5Fc9d0D908eF8444A7d8f6A7E1A7050A82084

| Project Website

https://elk.finance/

| Codebase

https://bscscan.com/address/0xeeeeeb57642040be42185f49c52f7e9b38f8eeee#code

https://elk.finance/
https://bscscan.com/address/0xeeeeeb57642040be42185f49c52f7e9b38f8eeee#code

Elk | Security Analysis

SUMMARY

Cross-chain value exchange is the next battleground for cryptocurrencies and the next major hurdle for
adoption. Moving or exchanging tokens across chains is an excruciating and expensive process. Elk.Finance
aims to make this process easy and intuitive. We aim to be the Forex market for the decentralized economy,
providing sub-second value transfers across chains. "Any chain, anytime, anywhere" is our motto. Join us as
we embark on this exciting adventure! The ELK Token The ELK token is an ERC20-compatible utility that
underpins the Elk.Finance ecosystem. Central to the Elk network's design is that all liquidity pools pair
exchange tokens with ELK. This design decision allows for a sub-second transfer of value across chains and
provides deeper liquidity for pools, reducing slippage and fees. ELK also doubles as the governance token for
the Elk network.

| Contract Summary

Documentation Quality

Elk provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Elk with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 11, 254, 319,
389, 621, 727, 790, 836, 882, 932, 959, 1037, 1122, 1152, 1537, 1626, 1877 and 2072.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 1698, 1711,
1856 and 1859.

Elk | Security Analysis

CONCLUSION

We have audited the Elk Project released on April 2022 to discover issues and identify potential security
vulnerabilities in Elk Project. This process is used to find technical issues and security loopholes which might
be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Elk smart contract code do not pose a considerable risk. The writing of the contract is
close to the standard of writing contracts in general. The low-risk issues found are some a floating pragma is
set, and potential use of "block.number" as a source of randomness. The environment variable "block.number"
looks like it might be used as a source of randomness. Note that the values of variables like coinbase, gaslimit,
block number, and timestamp are predictable and can be manipulated by a malicious miner. Also, keep in mind
that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness and be aware that the use of these variables introduces a certain level of trust in miners. The
current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure
that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-
level verification of the code.

Elk | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Elk | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Elk | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Elk | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Apr 07 2022 11:50:37 GMT+0000 (Coordinated Universal Time)

Finished Friday Apr 08 2022 18:56:32 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Elk.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 11

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

10

11 pragma solidity ^0.8.0;

12

13 /**

14 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow

15

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 254

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

253 // OpenZeppelin Contracts (last updated v4.5.0) (governance/utils/IVotes.sol)

254 pragma solidity ^0.8.0;

255

256 /**

257 * @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled

contracts.

258

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 319

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

318

319 pragma solidity ^0.8.0;

320

321 /**

322 * @dev String operations.

323

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 389

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

388

389 pragma solidity ^0.8.0;

390

391

392 /**

393

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 621

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

620

621 pragma solidity ^0.8.0;

622

623

624 /**

625

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 727

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

726

727 pragma solidity ^0.8.0;

728

729 /**

730 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via

signatures, as defined in

731

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 790

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

789

790 pragma solidity ^0.8.0;

791

792 /**

793 * @title Counters

794

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 836

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

835

836 pragma solidity ^0.8.0;

837

838 /**

839 * @dev Standard math utilities missing in the Solidity language.

840

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 882

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

881

882 pragma solidity ^0.8.0;

883

884

885 /**

886

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 932

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

931

932 pragma solidity ^0.8.0;

933

934 /**

935 * @dev Provides information about the current execution context, including the

936

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 959

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

958

959 pragma solidity ^0.8.0;

960

961

962 /**

963

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1037

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

1036

1037 pragma solidity ^0.8.0;

1038

1039 /**

1040 * @dev Interface of the ERC20 standard as defined in the EIP.

1041

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1122

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

1121

1122 pragma solidity ^0.8.0;

1123

1124

1125 /**

1126

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1152

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

1151

1152 pragma solidity ^0.8.0;

1153

1154

1155

1156

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1537

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

1536

1537 pragma solidity ^0.8.0;

1538

1539

1540

1541

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1626

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

1625

1626 pragma solidity ^0.8.0;

1627

1628

1629

1630

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1877

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

1876

1877 pragma solidity ^0.8.0;

1878

1879

1880

1881

Elk | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2072

low SEVERITY
The current pragma Solidity directive is "">=0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Elk.sol

Locations

2071

2072 pragma solidity >=0.8.0;

2073

2074

2075

2076

Elk | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1698

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Elk.sol

Locations

1697 function getPastVotes(address account, uint256 blockNumber) public view virtual

override returns (uint256) {

1698 require(blockNumber < block.number, "ERC20Votes: block not yet mined");

1699 return _checkpointsLookup(_checkpoints[account], blockNumber);

1700 }

1701

1702

Elk | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1711

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Elk.sol

Locations

1710 function getPastTotalSupply(uint256 blockNumber) public view virtual override

returns (uint256) {

1711 require(blockNumber < block.number, "ERC20Votes: block not yet mined");

1712 return _checkpointsLookup(_totalSupplyCheckpoints, blockNumber);

1713 }

1714

1715

Elk | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1856

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Elk.sol

Locations

1855

1856 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

1857 ckpts[pos - 1].votes = SafeCast.toUint224(newWeight);

1858 } else {

1859 ckpts.push(Checkpoint({fromBlock: SafeCast.toUint32(block.number), votes:

SafeCast.toUint224(newWeight)}));

1860

Elk | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1859

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Elk.sol

Locations

1858 } else {

1859 ckpts.push(Checkpoint({fromBlock: SafeCast.toUint32(block.number), votes:

SafeCast.toUint224(newWeight)}));

1860 }

1861 }

1862

1863

Elk | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Elk | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

