
ShibaCrypt

Smart Contract
Audit Report

07 Jul 2022

ShibaCrypt | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

ShibaCrypt | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

ShibaCrypt SCX Ethereum

| Addresses

Contract address 0xD15bC1F6408d11c2513444B9d0253efd838AF781

Contract deployer address 0xD15bC1F6408d11c2513444B9d0253efd838AF781

| Project Website

https://scxdao.com/

| Codebase

https://etherscan.io/address/0xD15bC1F6408d11c2513444B9d0253efd838AF781#code

https://scxdao.com/
https://etherscan.io/address/0xD15bC1F6408d11c2513444B9d0253efd838AF781#code

ShibaCrypt | Security Analysis

SUMMARY

ShibaCrypt is a token on the ERC20 blockchain inspired by the decentralized community-led vision of the
original Shiba project, and launched by a former member of the Shiba development team. The project relies on
community governance via DAO and provides web applications for various blockchain utilities.

| Contract Summary

Documentation Quality

ShibaCrypt provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by ShibaCrypt with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 701 and 726.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 110, 142, 165, 166, 201, 237, 465, 706, 706, 707, 707, 729, 729, 730, 730, 731, 731, 862, 864, 912,
917, 917, 922, 922, 950, 1008, 1027, 1033, 1109, 1139 and 864.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 11.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 863, 864, 864, 949, 1009, 1009, 1010, 1011, 1149 and 1150.

ShibaCrypt | Security Analysis

CONCLUSION

We have audited the ShibaCrypt project released on July 2022 to discover issues and identify potential security
vulnerabilities in ShibaCrypt Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the ShibaCrypt smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, and out-of-bounds array access
which the index access expression can cause an exception in case of the use of an invalid array index value. It
is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary
between builds. This is especially important if you rely on bytecode-level verification of the code.

ShibaCrypt | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

ShibaCrypt | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

ShibaCrypt | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

ShibaCrypt | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Jul 06 2022 20:25:22 GMT+0000 (Coordinated Universal Time)

Finished Thursday Jul 07 2022 02:58:22 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File ShibaCrypt.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 110

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

109 function add(uint256 a, uint256 b) internal pure returns (uint256) {

110 uint256 c = a + b;

111 require(c >= a, "SafeMath: addition overflow");

112

113 return c;

114

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 142

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

141 require(b <= a, errorMessage);

142 uint256 c = a - b;

143

144 return c;

145 }

146

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 165

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

164

165 uint256 c = a * b;

166 require(c / a == b, "SafeMath: multiplication overflow");

167

168 return c;

169

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 166

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

165 uint256 c = a * b;

166 require(c / a == b, "SafeMath: multiplication overflow");

167

168 return c;

169 }

170

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 201

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

200 require(b > 0, errorMessage);

201 uint256 c = a / b;

202 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

203

204 return c;

205

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 237

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

236 require(b != 0, errorMessage);

237 return a % b;

238 }

239 }

240

241

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 465

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

464 _owner = address(0);

465 _lockTime = block.timestamp + time;

466 emit OwnershipTransferred(_owner, address(0));

467 }

468

469

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 706

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

705 uint256 private constant MAX = ~uint256(0);

706 uint256 private _tTotal = 100000000000 * 10**9;

707 uint256 private _rTotal = (MAX - (MAX % _tTotal));

708 uint256 private _tFeeTotal;

709 address public marketingWallet;

710

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 706

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

705 uint256 private constant MAX = ~uint256(0);

706 uint256 private _tTotal = 100000000000 * 10**9;

707 uint256 private _rTotal = (MAX - (MAX % _tTotal));

708 uint256 private _tFeeTotal;

709 address public marketingWallet;

710

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 707

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

706 uint256 private _tTotal = 100000000000 * 10**9;

707 uint256 private _rTotal = (MAX - (MAX % _tTotal));

708 uint256 private _tFeeTotal;

709 address public marketingWallet;

710

711

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 707

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

706 uint256 private _tTotal = 100000000000 * 10**9;

707 uint256 private _rTotal = (MAX - (MAX % _tTotal));

708 uint256 private _tFeeTotal;

709 address public marketingWallet;

710

711

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 729

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

728

729 uint256 public _maxTxAmount = 500000000 * 10**9;

730 uint256 public numTokensSellToAddToLiquidity = 30000000 * 10**9;

731 uint256 public _maxWalletSize = 1000000000 * 10**9;

732

733

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 729

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

728

729 uint256 public _maxTxAmount = 500000000 * 10**9;

730 uint256 public numTokensSellToAddToLiquidity = 30000000 * 10**9;

731 uint256 public _maxWalletSize = 1000000000 * 10**9;

732

733

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 730

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

729 uint256 public _maxTxAmount = 500000000 * 10**9;

730 uint256 public numTokensSellToAddToLiquidity = 30000000 * 10**9;

731 uint256 public _maxWalletSize = 1000000000 * 10**9;

732

733 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

734

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 730

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

729 uint256 public _maxTxAmount = 500000000 * 10**9;

730 uint256 public numTokensSellToAddToLiquidity = 30000000 * 10**9;

731 uint256 public _maxWalletSize = 1000000000 * 10**9;

732

733 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

734

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 731

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

730 uint256 public numTokensSellToAddToLiquidity = 30000000 * 10**9;

731 uint256 public _maxWalletSize = 1000000000 * 10**9;

732

733 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

734 event SwapAndLiquifyEnabledUpdated(bool enabled);

735

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 731

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

730 uint256 public numTokensSellToAddToLiquidity = 30000000 * 10**9;

731 uint256 public _maxWalletSize = 1000000000 * 10**9;

732

733 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

734 event SwapAndLiquifyEnabledUpdated(bool enabled);

735

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 862

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

861 require(_isExcluded[account], "Account is already excluded");

862 for (uint256 i = 0; i < _excluded.length; i++) {

863 if (_excluded[i] == account) {

864 _excluded[i] = _excluded[_excluded.length - 1];

865 _tOwned[account] = 0;

866

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 864

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

863 if (_excluded[i] == account) {

864 _excluded[i] = _excluded[_excluded.length - 1];

865 _tOwned[account] = 0;

866 _isExcluded[account] = false;

867 _excluded.pop();

868

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 912

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

911 {

912 _maxWalletSize = _tTotal.mul(maxWalletSize).div(10**3);

913 }

914

915 function setMaxTxAmount(uint256 maxTxAmount) external onlyOwner() {

916

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 917

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

916 require(maxTxAmount > 10000000, "Max Tx Amount cannot be less than 10 Million");

917 _maxTxAmount = maxTxAmount * 10**9;

918 }

919

920 function setSwapThresholdAmount(uint256 SwapThresholdAmount) external onlyOwner() {

921

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 917

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

916 require(maxTxAmount > 10000000, "Max Tx Amount cannot be less than 10 Million");

917 _maxTxAmount = maxTxAmount * 10**9;

918 }

919

920 function setSwapThresholdAmount(uint256 SwapThresholdAmount) external onlyOwner() {

921

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 922

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

921 require(SwapThresholdAmount > 10000000, "Swap Threshold Amount cannot be less than

10 Million");

922 numTokensSellToAddToLiquidity = SwapThresholdAmount * 10**9;

923 }

924

925 function claimTokens () public onlyOwner {

926

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 922

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

921 require(SwapThresholdAmount > 10000000, "Swap Threshold Amount cannot be less than

10 Million");

922 numTokensSellToAddToLiquidity = SwapThresholdAmount * 10**9;

923 }

924

925 function claimTokens () public onlyOwner {

926

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 950

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

949 addBotWalletsInternal(multiplebotWallets[iterator]);

950 iterator += 1;

951 }

952 }

953

954

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1008

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

1007 uint256 tSupply = _tTotal;

1008 for (uint256 i = 0; i < _excluded.length; i++) {

1009 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1010 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1011 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1012

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1027

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

1026 return _amount.mul(_taxFee).div(

1027 10**2

1028);

1029 }

1030

1031

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1033

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

1032 return _amount.mul(_liquidityFee).div(

1033 10**2

1034);

1035 }

1036

1037

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1109

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

1108 require(

1109 amount + balanceOf(to) <= _maxWalletSize,

1110 "Recipient exceeds max wallet size."

1111);

1112 }

1113

ShibaCrypt | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 1139

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

1138 payable(marketingWallet).transfer(marketingshare);

1139 newBalance -= marketingshare;

1140 // add liquidity to uniswap

1141 addLiquidity(otherHalf, newBalance);

1142

1143

ShibaCrypt | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 864

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibaCrypt.sol

Locations

863 if (_excluded[i] == account) {

864 _excluded[i] = _excluded[_excluded.length - 1];

865 _tOwned[account] = 0;

866 _isExcluded[account] = false;

867 _excluded.pop();

868

ShibaCrypt | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 11

low SEVERITY
The current pragma Solidity directive is ""^0.8.9"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ShibaCrypt.sol

Locations

10

11 pragma solidity ^0.8.9;

12 // SPDX-License-Identifier: Unlicensed

13 interface IERC20 {

14

15

ShibaCrypt | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 701

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "botscantrade" is
internal. Other possible visibility settings are public and private.

Source File
- ShibaCrypt.sol

Locations

700 mapping (address => bool) private botWallets;

701 bool botscantrade = false;

702

703 bool public canTrade = false;

704

705

ShibaCrypt | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 726

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- ShibaCrypt.sol

Locations

725

726 bool inSwapAndLiquify;

727 bool public swapAndLiquifyEnabled = true;

728

729 uint256 public _maxTxAmount = 500000000 * 10**9;

730

ShibaCrypt | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 863

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ShibaCrypt.sol

Locations

862 for (uint256 i = 0; i < _excluded.length; i++) {

863 if (_excluded[i] == account) {

864 _excluded[i] = _excluded[_excluded.length - 1];

865 _tOwned[account] = 0;

866 _isExcluded[account] = false;

867

ShibaCrypt | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 864

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ShibaCrypt.sol

Locations

863 if (_excluded[i] == account) {

864 _excluded[i] = _excluded[_excluded.length - 1];

865 _tOwned[account] = 0;

866 _isExcluded[account] = false;

867 _excluded.pop();

868

ShibaCrypt | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 864

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ShibaCrypt.sol

Locations

863 if (_excluded[i] == account) {

864 _excluded[i] = _excluded[_excluded.length - 1];

865 _tOwned[account] = 0;

866 _isExcluded[account] = false;

867 _excluded.pop();

868

ShibaCrypt | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 949

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ShibaCrypt.sol

Locations

948 while(iterator < multiplebotWallets.length){

949 addBotWalletsInternal(multiplebotWallets[iterator]);

950 iterator += 1;

951 }

952 }

953

ShibaCrypt | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1009

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ShibaCrypt.sol

Locations

1008 for (uint256 i = 0; i < _excluded.length; i++) {

1009 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1010 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1011 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1012 }

1013

ShibaCrypt | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1009

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ShibaCrypt.sol

Locations

1008 for (uint256 i = 0; i < _excluded.length; i++) {

1009 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1010 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1011 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1012 }

1013

ShibaCrypt | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1010

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ShibaCrypt.sol

Locations

1009 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1010 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1011 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1012 }

1013 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1014

ShibaCrypt | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1011

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ShibaCrypt.sol

Locations

1010 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1011 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1012 }

1013 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1014 return (rSupply, tSupply);

1015

ShibaCrypt | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1149

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ShibaCrypt.sol

Locations

1148 address[] memory path = new address[](2);

1149 path[0] = address(this);

1150 path[1] = uniswapV2Router.WETH();

1151

1152 _approve(address(this), address(uniswapV2Router), tokenAmount);

1153

ShibaCrypt | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1150

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ShibaCrypt.sol

Locations

1149 path[0] = address(this);

1150 path[1] = uniswapV2Router.WETH();

1151

1152 _approve(address(this), address(uniswapV2Router), tokenAmount);

1153

1154

ShibaCrypt | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

ShibaCrypt | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

