
PIRATE TOKEN

Smart Contract
Audit Report

15 Dec 2022

PIRATE TOKEN | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

PIRATE TOKEN | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

PIRATE TOKEN PIRATE TOKEN Ethereum

| Addresses

Contract address 0x8d79323d27f3dcc2781fe44192caf1ad7e836787

Contract deployer address 0x83Bf5e55e8aEe4e63210Db612c82dB822f3103fF

| Project Website

https://thepiratetoken.com/

| Codebase

https://etherscan.io/address/0x8d79323d27f3dcc2781fe44192caf1ad7e836787#code

https://thepiratetoken.com/
https://etherscan.io/address/0x8d79323d27f3dcc2781fe44192caf1ad7e836787#code

PIRATE TOKEN | Security Analysis

SUMMARY

We are currently building a P2E pirate game and we are about to release our first tier of NFT's. These NFT's will
have huge utility for the game and our MetaVerse.
Our end goal is to build Pirate Ships in the real world for family adventures and fun cruises.

| Contract Summary

Documentation Quality

PIRATE TOKEN provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by PIRATE TOKEN with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 305, 324, 346, 379, 381, 402, 403, 428, 430, 601, 615, 630, 631, 644, 656, 671, 685, 699, 713, 729,
752, 775, 801, 1516, 1535, 1557, 1590, 1592, 1613, 1614, 1639, 1641, 1868, 1872, 1884, 1891, 1900,
2001, 2105, 2140, 2227, 2512, 2522, 2526, 2703, 2811, 3056 and 2001.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1970, 2002, 2007, 2518, 2687, 2688, 2694, 2698, 2699, 2700, 2709,
2716, 2812, 3128, 3129, 3145, 3146 and 3147.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 2984 and
3084.

PIRATE TOKEN | Security Analysis

CONCLUSION

We have audited the PIRATE TOKEN project released on December 2022 to discover issues and identify
potential security vulnerabilities in PIRATE TOKEN Project. This process is used to find technical issues and
security loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the PIRATE TOKEN smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, tx.origin as a part of authorization control, and out of bounds array access which the index
access expression can cause an exception in case of the use of an invalid array index value. We recommend
avoiding "tx.origin" issue, using "tx.origin" as a security control can lead to authorization bypass vulnerabilities.
Consider using "msg.sender" unless you really know what you are doing.

PIRATE TOKEN | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

PIRATE TOKEN | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PIRATE TOKEN | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

PIRATE TOKEN | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Dec 14 2022 18:57:54 GMT+0000 (Coordinated Universal Time)

Finished Thursday Dec 15 2022 14:58:14 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File AntiBotBABYTOKEN.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 305

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

304 unchecked {

305 _approve(sender, _msgSender(), currentAllowance - amount);

306 }

307

308 return true;

309

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 324

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

323 function increaseAllowance(address spender, uint256 addedValue) public virtual

returns (bool) {

324 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

325 return true;

326 }

327

328

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 346

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

345 unchecked {

346 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

347 }

348

349 return true;

350

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 379

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

378 unchecked {

379 _balances[sender] = senderBalance - amount;

380 }

381 _balances[recipient] += amount;

382

383

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 381

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

380 }

381 _balances[recipient] += amount;

382

383 emit Transfer(sender, recipient, amount);

384

385

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 402

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

401

402 _totalSupply += amount;

403 _balances[account] += amount;

404 emit Transfer(address(0), account, amount);

405

406

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 403

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

402 _totalSupply += amount;

403 _balances[account] += amount;

404 emit Transfer(address(0), account, amount);

405

406 _afterTokenTransfer(address(0), account, amount);

407

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 428

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

427 unchecked {

428 _balances[account] = accountBalance - amount;

429 }

430 _totalSupply -= amount;

431

432

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 430

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

429 }

430 _totalSupply -= amount;

431

432 emit Transfer(account, address(0), amount);

433

434

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 601

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

600 unchecked {

601 uint256 c = a + b;

602 if (c < a) return (false, 0);

603 return (true, c);

604 }

605

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 615

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

614 if (b > a) return (false, 0);

615 return (true, a - b);

616 }

617 }

618

619

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 630

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

629 if (a == 0) return (true, 0);

630 uint256 c = a * b;

631 if (c / a != b) return (false, 0);

632 return (true, c);

633 }

634

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 631

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

630 uint256 c = a * b;

631 if (c / a != b) return (false, 0);

632 return (true, c);

633 }

634 }

635

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 644

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

643 if (b == 0) return (false, 0);

644 return (true, a / b);

645 }

646 }

647

648

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 656

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

655 if (b == 0) return (false, 0);

656 return (true, a % b);

657 }

658 }

659

660

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 671

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

670 function add(uint256 a, uint256 b) internal pure returns (uint256) {

671 return a + b;

672 }

673

674 /**

675

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 685

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

684 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

685 return a - b;

686 }

687

688 /**

689

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 699

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

698 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

699 return a * b;

700 }

701

702 /**

703

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 713

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

712 function div(uint256 a, uint256 b) internal pure returns (uint256) {

713 return a / b;

714 }

715

716 /**

717

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 729

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

728 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

729 return a % b;

730 }

731

732 /**

733

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 752

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

751 require(b <= a, errorMessage);

752 return a - b;

753 }

754 }

755

756

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 775

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

774 require(b > 0, errorMessage);

775 return a / b;

776 }

777 }

778

779

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 801

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

800 require(b > 0, errorMessage);

801 return a % b;

802 }

803 }

804 }

805

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1516

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

1515 unchecked {

1516 _approve(sender, _msgSender(), currentAllowance - amount);

1517 }

1518

1519 return true;

1520

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1535

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

1534 function increaseAllowance(address spender, uint256 addedValue) public virtual

returns (bool) {

1535 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

1536 return true;

1537 }

1538

1539

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1557

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

1556 unchecked {

1557 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

1558 }

1559

1560 return true;

1561

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1590

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

1589 unchecked {

1590 _balances[sender] = senderBalance - amount;

1591 }

1592 _balances[recipient] += amount;

1593

1594

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1592

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

1591 }

1592 _balances[recipient] += amount;

1593

1594 emit Transfer(sender, recipient, amount);

1595

1596

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1613

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

1612

1613 _totalSupply += amount;

1614 _balances[account] += amount;

1615 emit Transfer(address(0), account, amount);

1616

1617

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1614

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

1613 _totalSupply += amount;

1614 _balances[account] += amount;

1615 emit Transfer(address(0), account, amount);

1616

1617 _afterTokenTransfer(address(0), account, amount);

1618

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1639

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

1638 unchecked {

1639 _balances[account] = accountBalance - amount;

1640 }

1641 _totalSupply -= amount;

1642

1643

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 1641

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

1640 }

1641 _totalSupply -= amount;

1642

1643 emit Transfer(account, address(0), amount);

1644

1645

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1868

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

1867 function mul(int256 a, int256 b) internal pure returns (int256) {

1868 int256 c = a * b;

1869

1870 // Detect overflow when multiplying MIN_INT256 with -1

1871 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

1872

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1872

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

1871 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

1872 require((b == 0) || (c / b == a));

1873 return c;

1874 }

1875

1876

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1884

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

1883 // Solidity already throws when dividing by 0.

1884 return a / b;

1885 }

1886

1887 /**

1888

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1891

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

1890 function sub(int256 a, int256 b) internal pure returns (int256) {

1891 int256 c = a - b;

1892 require((b >= 0 && c <= a) || (b < 0 && c > a));

1893 return c;

1894 }

1895

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1900

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

1899 function add(int256 a, int256 b) internal pure returns (int256) {

1900 int256 c = a + b;

1901 require((b >= 0 && c >= a) || (b < 0 && c < a));

1902 return c;

1903 }

1904

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2001

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

2000 uint256 index = map.indexOf[key];

2001 uint256 lastIndex = map.keys.length - 1;

2002 address lastKey = map.keys[lastIndex];

2003

2004 map.indexOf[lastKey] = index;

2005

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 2105

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

2104 // see https://github.com/ethereum/EIPs/issues/1726#issuecomment-472352728

2105 uint256 internal constant magnitude = 2**128;

2106

2107 uint256 internal magnifiedDividendPerShare;

2108

2109

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 2140

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

2139 magnifiedDividendPerShare = magnifiedDividendPerShare.add(

2140 (amount).mul(magnitude) / totalSupply()

2141);

2142 emit DividendsDistributed(msg.sender, amount);

2143

2144

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 2227

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

2226 return

2227 magnifiedDividendPerShare

2228 .mul(balanceOf(_owner))

2229 .toInt256Safe()

2230 .add(magnifiedDividendCorrections[_owner])

2231

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2512

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

2511 while (gasUsed < gas && iterations < numberOfTokenHolders) {

2512 _lastProcessedIndex++;

2513

2514 if (_lastProcessedIndex >= tokenHoldersMap.keys.length) {

2515 _lastProcessedIndex = 0;

2516

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2522

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

2521 if (processAccount(payable(account), true)) {

2522 claims++;

2523 }

2524 }

2525

2526

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2526

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

2525

2526 iterations++;

2527

2528 uint256 newGasLeft = gasleft();

2529

2530

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 2703

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

2702 require(totalFees <= 25, "Total fee is over 25%");

2703 swapTokensAtAmount = totalSupply_.mul(2).div(10**6); // 0.002%

2704

2705 // use by default 300,000 gas to process auto-claiming dividends

2706 gasForProcessing = 300000;

2707

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2811

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

2810) public onlyOwner {

2811 for (uint256 i = 0; i < accounts.length; i++) {

2812 _isExcludedFromFees[accounts[i]] = excluded;

2813 }

2814

2815

PIRATE TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 3056

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

3055 if (automatedMarketMakerPairs[to]) {

3056 fees += amount.mul(1).div(100);

3057 }

3058 amount = amount.sub(fees);

3059

3060

PIRATE TOKEN | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 2001

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- AntiBotBABYTOKEN.sol

Locations

2000 uint256 index = map.indexOf[key];

2001 uint256 lastIndex = map.keys.length - 1;

2002 address lastKey = map.keys[lastIndex];

2003

2004 map.indexOf[lastKey] = index;

2005

PIRATE TOKEN | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 2984

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- AntiBotBABYTOKEN.sol

Locations

2983 gas,

2984 tx.origin

2985);

2986 }

2987

2988

PIRATE TOKEN | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 3084

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- AntiBotBABYTOKEN.sol

Locations

3083 gas,

3084 tx.origin

3085);

3086 } catch {}

3087 }

3088

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1970

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

1969 {

1970 return map.keys[index];

1971 }

1972

1973 function size(Map storage map) public view returns (uint256) {

1974

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2002

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

2001 uint256 lastIndex = map.keys.length - 1;

2002 address lastKey = map.keys[lastIndex];

2003

2004 map.indexOf[lastKey] = index;

2005 delete map.indexOf[key];

2006

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2007

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

2006

2007 map.keys[index] = lastKey;

2008 map.keys.pop();

2009 }

2010 }

2011

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2518

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

2517

2518 address account = tokenHoldersMap.keys[_lastProcessedIndex];

2519

2520 if (canAutoClaim(lastClaimTimes[account])) {

2521 if (processAccount(payable(account), true)) {

2522

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2687

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

2686) payable ERC20(name_, symbol_) {

2687 rewardToken = addrs[0];

2688 _marketingWalletAddress = addrs[2];

2689 require(

2690 msg.sender != _marketingWalletAddress,

2691

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2688

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

2687 rewardToken = addrs[0];

2688 _marketingWalletAddress = addrs[2];

2689 require(

2690 msg.sender != _marketingWalletAddress,

2691 "Owner and marketing wallet cannot be the same"

2692

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2694

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

2693

2694 pinkAntiBot = IPinkAntiBot(addrs[4]);

2695 pinkAntiBot.setTokenOwner(owner());

2696 enableAntiBot = true;

2697

2698

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2698

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

2697

2698 tokenRewardsFee = feeSettings[0];

2699 liquidityFee = feeSettings[1];

2700 marketingFee = feeSettings[2];

2701 totalFees = tokenRewardsFee.add(liquidityFee).add(marketingFee);

2702

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2699

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

2698 tokenRewardsFee = feeSettings[0];

2699 liquidityFee = feeSettings[1];

2700 marketingFee = feeSettings[2];

2701 totalFees = tokenRewardsFee.add(liquidityFee).add(marketingFee);

2702 require(totalFees <= 25, "Total fee is over 25%");

2703

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2700

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

2699 liquidityFee = feeSettings[1];

2700 marketingFee = feeSettings[2];

2701 totalFees = tokenRewardsFee.add(liquidityFee).add(marketingFee);

2702 require(totalFees <= 25, "Total fee is over 25%");

2703 swapTokensAtAmount = totalSupply_.mul(2).div(10**6); // 0.002%

2704

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2709

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

2708 dividendTracker = BABYTOKENDividendTracker(

2709 payable(Clones.clone(addrs[3]))

2710);

2711 dividendTracker.initialize(

2712 rewardToken,

2713

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2716

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

2715

2716 IUniswapV2Router02 _uniswapV2Router = IUniswapV2Router02(addrs[1]);

2717 // Create a uniswap pair for this new token

2718 address _uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory())

2719 .createPair(address(this), _uniswapV2Router.WETH());

2720

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2812

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

2811 for (uint256 i = 0; i < accounts.length; i++) {

2812 _isExcludedFromFees[accounts[i]] = excluded;

2813 }

2814

2815 emit ExcludeMultipleAccountsFromFees(accounts, excluded);

2816

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 3128

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

3127 address[] memory path = new address[](2);

3128 path[0] = address(this);

3129 path[1] = uniswapV2Router.WETH();

3130

3131 _approve(address(this), address(uniswapV2Router), tokenAmount);

3132

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 3129

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

3128 path[0] = address(this);

3129 path[1] = uniswapV2Router.WETH();

3130

3131 _approve(address(this), address(uniswapV2Router), tokenAmount);

3132

3133

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 3145

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

3144 address[] memory path = new address[](3);

3145 path[0] = address(this);

3146 path[1] = uniswapV2Router.WETH();

3147 path[2] = rewardToken;

3148

3149

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 3146

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

3145 path[0] = address(this);

3146 path[1] = uniswapV2Router.WETH();

3147 path[2] = rewardToken;

3148

3149 _approve(address(this), address(uniswapV2Router), tokenAmount);

3150

PIRATE TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 3147

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- AntiBotBABYTOKEN.sol

Locations

3146 path[1] = uniswapV2Router.WETH();

3147 path[2] = rewardToken;

3148

3149 _approve(address(this), address(uniswapV2Router), tokenAmount);

3150

3151

PIRATE TOKEN | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

PIRATE TOKEN | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

