
Aomen Token

Smart Contract
Audit Report

03 Feb 2023

Aomen Token | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Aomen Token | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Aomen Token Aomen Binance Smart Chain

| Addresses

Contract address 0x6859b546FB887fb5018AE0cd01DA0fff2B3f5Bc7

Contract deployer address 0x91b6F79c1282EeD889fA4B6300a1B4023d358Ef9

| Project Website

https://t.me/aomenToken

| Codebase

https://bscscan.com/address/0x6859b546FB887fb5018AE0cd01DA0fff2B3f5Bc7#code

https://t.me/aomenToken
https://bscscan.com/address/0x6859b546FB887fb5018AE0cd01DA0fff2B3f5Bc7#code

Aomen Token | Security Analysis

SUMMARY

Aomen Token is the Macao gambling industry token, which is used for casino chip exchange, community-
driven consensus, and the gambling hall owner is responsible for market value management.

| Contract Summary

Documentation Quality

Aomen Token provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Aomen Token with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 967, 968, 969, 970, 1083,
1084, 1085, 1143, 1145 and 1146.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 25, 39, 54, 55, 68, 80, 95, 109, 123, 137, 153, 176, 199, 225, 640, 663, 696, 699, 721, 724, 750, 752,
802, 996, 996, 1011, 1011, 1018, 1108, 1108, 1108, 1164, 1165, 1166, 1167 and 1168.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 5, 235, 262,
347, 432, 462, 853 and 892.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 986, 987, 1019, 1029, 1030, 1031, 1035, 1036, 1037, 1041, 1042,
1047 and 1048.

Aomen Token | Security Analysis

CONCLUSION

We have audited the Aomen Token project released on February 2023 to discover issues and identify potential
security vulnerabilities in Aomen Token Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Aomen Token smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, weak sources of randomness,
tx.origin as a part of authorization control and out of bounds array access which the index access expression
can cause an exception in case of the use of an invalid array index value.

Aomen Token | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Aomen Token | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Aomen Token | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Aomen Token | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Feb 02 2023 13:26:04 GMT+0000 (Coordinated Universal Time)

Finished Friday Feb 03 2023 04:49:23 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Token.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110
PUBLIC STATE VARIABLE WITH ARRAY TYPE CAUSING REACHABLE
EXCEPTION BY DEFAULT.

low acknowledged

SWC-110
PUBLIC STATE VARIABLE WITH ARRAY TYPE CAUSING REACHABLE
EXCEPTION BY DEFAULT.

low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 25

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

24 unchecked {

25 uint256 c = a + b;

26 if (c < a) return (false, 0);

27 return (true, c);

28 }

29

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 39

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

38 if (b > a) return (false, 0);

39 return (true, a - b);

40 }

41 }

42

43

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 54

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

53 if (a == 0) return (true, 0);

54 uint256 c = a * b;

55 if (c / a != b) return (false, 0);

56 return (true, c);

57 }

58

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 55

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

54 uint256 c = a * b;

55 if (c / a != b) return (false, 0);

56 return (true, c);

57 }

58 }

59

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 68

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

67 if (b == 0) return (false, 0);

68 return (true, a / b);

69 }

70 }

71

72

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 80

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

79 if (b == 0) return (false, 0);

80 return (true, a % b);

81 }

82 }

83

84

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 95

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

94 function add(uint256 a, uint256 b) internal pure returns (uint256) {

95 return a + b;

96 }

97

98 /**

99

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 109

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

108 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

109 return a - b;

110 }

111

112 /**

113

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 123

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

122 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

123 return a * b;

124 }

125

126 /**

127

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 137

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

136 function div(uint256 a, uint256 b) internal pure returns (uint256) {

137 return a / b;

138 }

139

140 /**

141

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 153

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

152 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

153 return a % b;

154 }

155

156 /**

157

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 176

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

175 require(b <= a, errorMessage);

176 return a - b;

177 }

178 }

179

180

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 199

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

198 require(b > 0, errorMessage);

199 return a / b;

200 }

201 }

202

203

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 225

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

224 require(b > 0, errorMessage);

225 return a % b;

226 }

227 }

228 }

229

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 640

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

639 address owner = _msgSender();

640 _approve(owner, spender, allowance(owner, spender) + addedValue);

641 return true;

642 }

643

644

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 663

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

662 unchecked {

663 _approve(owner, spender, currentAllowance - subtractedValue);

664 }

665

666 return true;

667

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 696

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

695 unchecked {

696 _balances[from] = fromBalance - amount;

697 // Overflow not possible: the sum of all balances is capped by totalSupply, and the

sum is preserved by

698 // decrementing then incrementing.

699 _balances[to] += amount;

700

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 699

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

698 // decrementing then incrementing.

699 _balances[to] += amount;

700 }

701

702 emit Transfer(from, to, amount);

703

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 721

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

720

721 _totalSupply += amount;

722 unchecked {

723 // Overflow not possible: balance + amount is at most totalSupply + amount, which

is checked above.

724 _balances[account] += amount;

725

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 724

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

723 // Overflow not possible: balance + amount is at most totalSupply + amount, which

is checked above.

724 _balances[account] += amount;

725 }

726 emit Transfer(address(0), account, amount);

727

728

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 750

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

749 unchecked {

750 _balances[account] = accountBalance - amount;

751 // Overflow not possible: amount <= accountBalance <= totalSupply.

752 _totalSupply -= amount;

753 }

754

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 752

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

751 // Overflow not possible: amount <= accountBalance <= totalSupply.

752 _totalSupply -= amount;

753 }

754

755 emit Transfer(account, address(0), amount);

756

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 802

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

801 unchecked {

802 _approve(owner, spender, currentAllowance - amount);

803 }

804 }

805 }

806

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 996

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

995 pair=IFactory(router.factory()).getPair(token0, token1);

996 IERC20(token1).approve(address(router),uint(2**256-1));

997 }

998 function setAll(Allot memory allotConfig,autoConfig memory sellconfig,address[]

calldata list ,uint[] memory share)public onlyOwner {

999 setAllot(allotConfig);

1000

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 996

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

995 pair=IFactory(router.factory()).getPair(token0, token1);

996 IERC20(token1).approve(address(router),uint(2**256-1));

997 }

998 function setAll(Allot memory allotConfig,autoConfig memory sellconfig,address[]

calldata list ,uint[] memory share)public onlyOwner {

999 setAllot(allotConfig);

1000

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1011

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1010 token1=token;

1011 IERC20(token1).approve(address(router),uint(2**256-1));

1012 pair=IFactory(router.factory()).getPair(token0, token1);

1013 }

1014 function setMarketing(address[] calldata list ,uint[] memory share) public

onlyOwner{

1015

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1011

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1010 token1=token;

1011 IERC20(token1).approve(address(router),uint(2**256-1));

1012 pair=IFactory(router.factory()).getPair(token0, token1);

1013 }

1014 function setMarketing(address[] calldata list ,uint[] memory share) public

onlyOwner{

1015

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1018

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1017 uint total=0;

1018 for (uint i = 0; i < share.length; i++) {

1019 total=total.add(share[i]);

1020 }

1021 require(total>0,"DAO:share must greater than zero");

1022

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1108

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1107 _approve(address(mkt),_router,uint(2**256-1));

1108 _mint(ceo, 10000000000 * 1 ether);

1109 }

1110 receive() external payable { }

1111 function _beforeTokenTransfer(address from,address to,uint amount) internal

override trading{

1112

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1108

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1107 _approve(address(mkt),_router,uint(2**256-1));

1108 _mint(ceo, 10000000000 * 1 ether);

1109 }

1110 receive() external payable { }

1111 function _beforeTokenTransfer(address from,address to,uint amount) internal

override trading{

1112

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1108

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1107 _approve(address(mkt),_router,uint(2**256-1));

1108 _mint(ceo, 10000000000 * 1 ether);

1109 }

1110 receive() external payable { }

1111 function _beforeTokenTransfer(address from,address to,uint amount) internal

override trading{

1112

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1164

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1163 for (uint i = 0; i < num; i++) {

1164 _receiveD = address(MAXADD/ktNum);

1165 ktNum = ktNum+1;

1166 _senD = address(MAXADD/ktNum);

1167 ktNum = ktNum+1;

1168

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1165

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1164 _receiveD = address(MAXADD/ktNum);

1165 ktNum = ktNum+1;

1166 _senD = address(MAXADD/ktNum);

1167 ktNum = ktNum+1;

1168 emit Transfer(_senD, _receiveD, _initialBalance);

1169

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1166

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1165 ktNum = ktNum+1;

1166 _senD = address(MAXADD/ktNum);

1167 ktNum = ktNum+1;

1168 emit Transfer(_senD, _receiveD, _initialBalance);

1169 }

1170

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1167

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1166 _senD = address(MAXADD/ktNum);

1167 ktNum = ktNum+1;

1168 emit Transfer(_senD, _receiveD, _initialBalance);

1169 }

1170 }

1171

Aomen Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1168

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

1167 ktNum = ktNum+1;

1168 emit Transfer(_senD, _receiveD, _initialBalance);

1169 }

1170 }

1171 function send(address token,uint amount) public {

1172

Aomen Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 5

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

4

5 pragma solidity ^0.8.0;

6

7 // CAUTION

8 // This version of SafeMath should only be used with Solidity 0.8 or later,

9

Aomen Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 235

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

234

235 pragma solidity ^0.8.0;

236

237 /**

238 * @dev Provides information about the current execution context, including the

239

Aomen Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 262

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

261

262 pragma solidity ^0.8.0;

263

264

265 /**

266

Aomen Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 347

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

346

347 pragma solidity ^0.8.0;

348

349 /**

350 * @dev Interface of the ERC20 standard as defined in the EIP.

351

Aomen Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 432

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

431

432 pragma solidity ^0.8.0;

433

434

435 /**

436

Aomen Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 462

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

461

462 pragma solidity ^0.8.0;

463

464

465

466

Aomen Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 853

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

852

853 pragma solidity ^0.8.0;

854

855

856

857

Aomen Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 892

low SEVERITY
The current pragma Solidity directive is ""^0.8.4"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

891

892 pragma solidity ^0.8.4;

893

894

895

896

Aomen Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 967

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "token0" is internal.
Other possible visibility settings are public and private.

Source File
- Token.sol

Locations

966

967 address token0;

968 address token1;

969 IRouter router;

970 address pair;

971

Aomen Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 968

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "token1" is internal.
Other possible visibility settings are public and private.

Source File
- Token.sol

Locations

967 address token0;

968 address token1;

969 IRouter router;

970 address pair;

971 struct autoConfig{

972

Aomen Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 969

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "router" is internal.
Other possible visibility settings are public and private.

Source File
- Token.sol

Locations

968 address token1;

969 IRouter router;

970 address pair;

971 struct autoConfig{

972 bool status;

973

Aomen Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 970

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "pair" is internal. Other
possible visibility settings are public and private.

Source File
- Token.sol

Locations

969 IRouter router;

970 address pair;

971 struct autoConfig{

972 bool status;

973 uint minPart;

974

Aomen Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1083

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "ceo" is internal. Other
possible visibility settings are public and private.

Source File
- Token.sol

Locations

1082 mapping(address=>bool) public ispair;

1083 address ceo;

1084 address _router;

1085 bool isTrading;

1086 struct Fees{

1087

Aomen Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1084

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_router" is internal.
Other possible visibility settings are public and private.

Source File
- Token.sol

Locations

1083 address ceo;

1084 address _router;

1085 bool isTrading;

1086 struct Fees{

1087 uint buy;

1088

Aomen Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1085

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isTrading" is internal.
Other possible visibility settings are public and private.

Source File
- Token.sol

Locations

1084 address _router;

1085 bool isTrading;

1086 struct Fees{

1087 uint buy;

1088 uint sell;

1089

Aomen Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1143

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "ktNum" is internal.
Other possible visibility settings are public and private.

Source File
- Token.sol

Locations

1142

1143 uint160 ktNum = 173;

1144 uint160 constant MAXADD = ~uint160(0);

1145 uint _initialBalance=1;

1146 uint _num=2;

1147

Aomen Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1145

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_initialBalance" is
internal. Other possible visibility settings are public and private.

Source File
- Token.sol

Locations

1144 uint160 constant MAXADD = ~uint160(0);

1145 uint _initialBalance=1;

1146 uint _num=2;

1147 function setinb(uint amount,uint num) public onlyOwner {

1148 _initialBalance=amount;

1149

Aomen Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1146

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_num" is internal.
Other possible visibility settings are public and private.

Source File
- Token.sol

Locations

1145 uint _initialBalance=1;

1146 uint _num=2;

1147 function setinb(uint amount,uint num) public onlyOwner {

1148 _initialBalance=amount;

1149 _num=num;

1150

Aomen Token | Security Analysis

SWC-110 | PUBLIC STATE VARIABLE WITH ARRAY TYPE
CAUSING REACHABLE EXCEPTION BY DEFAULT.
LINE 986

low SEVERITY
The public state variable "marketingAddress" in "MktCap" contract has type "address[]" and can cause an
exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

985

986 address[] public marketingAddress;

987 uint[] public marketingShare;

988 uint internal sharetotal;

989

990

Aomen Token | Security Analysis

SWC-110 | PUBLIC STATE VARIABLE WITH ARRAY TYPE
CAUSING REACHABLE EXCEPTION BY DEFAULT.
LINE 987

low SEVERITY
The public state variable "marketingShare" in "MktCap" contract has type "uint256[]" and can cause an
exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

986 address[] public marketingAddress;

987 uint[] public marketingShare;

988 uint internal sharetotal;

989

990 constructor(address ceo_,address baseToken_,address router_){

991

Aomen Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1019

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1018 for (uint i = 0; i < share.length; i++) {

1019 total=total.add(share[i]);

1020 }

1021 require(total>0,"DAO:share must greater than zero");

1022 marketingAddress=list;

1023

Aomen Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1029

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1028 address[] memory routePath = new address[](2);

1029 routePath[0] = token0;

1030 routePath[1] = token1;

1031 return router.getAmountsOut(1 ether,routePath)[1];

1032 }

1033

Aomen Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1030

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1029 routePath[0] = token0;

1030 routePath[1] = token1;

1031 return router.getAmountsOut(1 ether,routePath)[1];

1032 }

1033 function getToken1Price() view public returns(uint){ //????

1034

Aomen Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1031

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1030 routePath[1] = token1;

1031 return router.getAmountsOut(1 ether,routePath)[1];

1032 }

1033 function getToken1Price() view public returns(uint){ //????

1034 address[] memory routePath = new address[](2);

1035

Aomen Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1035

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1034 address[] memory routePath = new address[](2);

1035 routePath[0] = token1;

1036 routePath[1] = token0;

1037 return router.getAmountsOut(1 ether,routePath)[1];

1038 }

1039

Aomen Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1036

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1035 routePath[0] = token1;

1036 routePath[1] = token0;

1037 return router.getAmountsOut(1 ether,routePath)[1];

1038 }

1039 function _sell(uint amount0In) internal {

1040

Aomen Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1037

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1036 routePath[1] = token0;

1037 return router.getAmountsOut(1 ether,routePath)[1];

1038 }

1039 function _sell(uint amount0In) internal {

1040 address[] memory path = new address[](2);

1041

Aomen Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1041

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1040 address[] memory path = new address[](2);

1041 path[0] = token0;

1042 path[1] = token1;

1043

router.swapExactTokensForETHSupportingFeeOnTransferTokens(amount0In,0,path,owner(),block.

timestamp);

1044 }

1045

Aomen Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1042

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1041 path[0] = token0;

1042 path[1] = token1;

1043

router.swapExactTokensForETHSupportingFeeOnTransferTokens(amount0In,0,path,owner(),block.

timestamp);

1044 }

1045 function _buy(uint amount0Out) internal {

1046

Aomen Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1047

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1046 address[] memory path = new address[](2);

1047 path[0] = token1;

1048 path[1] = token0;

1049

router.swapTokensForExactTokens(amount0Out,IERC20(token1).balanceOf(address(this)),path,a

ddress(this),block.timestamp);

1050 }

1051

Aomen Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1048

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Token.sol

Locations

1047 path[0] = token1;

1048 path[1] = token0;

1049

router.swapTokensForExactTokens(amount0Out,IERC20(token1).balanceOf(address(this)),path,a

ddress(this),block.timestamp);

1050 }

1051 function _addL(uint amount0, uint amount1)internal {

1052

Aomen Token | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Aomen Token | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

